Transformer模型代码逐行解释,免费附上所有代码

在这里插入图片描述

1. 第一段代码

class PreNorm(nn.Module):
    def __init__(self, dim, fn):
        super().__init__()
        self.norm = nn.LayerNorm(dim)
        self.fn = fn

    def forward(self, x, **kwargs):
        return self.fn(self.norm(x), **kwargs)

class FeedForward(nn.Module):
    def __init__(self, dim, hidden_dim, dropout=0.):
        super().__init__()
        self.net = nn.Sequential(
            nn.Linear(dim, hidden_dim),
            nn.GELU(),
            nn.Dropout(dropout),
            nn.Linear(hidden_dim, dim),
            nn.Dropout(dropout)
        )

    def forward(self, x):
        return self.net(x)
  1. class PreNorm(nn.Module):: 这行定义了一个类 PreNorm,它继承自 nn.Module,意味着它是一个 PyTorch 模块。

  2. def __init__(self, dim, fn):: 这是 PreNorm 类的初始化函数。它接受两个参数:dimfndim 是输入数据的维度,fn 是一个函数或者模块,将应用于数据。

  3. super().__init__(): 这行调用了父类 nn.Module 的初始化函数,确保正确地初始化模块。

  4. self.norm = nn.LayerNorm(dim): 这行创建了一个 Layer Normalization 层,并将其赋值给 self.norm。Layer Normalization 是一种归一化技术,用于调整输入数据的分布,使其更易于处理。

  5. self.fn = fn: 这行将传入的函数或模块赋值给 self.fn,以备稍后在前向传播时使用。

  6. def forward(self, x, **kwargs):: 这是 PreNorm 类的前向传播函数。它接受输入 x 和可选的关键字参数 kwargs

  7. return self.fn(self.norm(x), **kwargs): 这行调用了 self.norm 对输入 x 进行归一化,然后将归一化后的结果传递给 self.fn 进行处理。这就是所谓的 “Pre-Norm”,即在应用函数或模块之前对输入进行归一化处理。

  8. class FeedForward(nn.Module):: 这行定义了另一个类 FeedForward,同样是继承自 nn.Module

  9. def __init__(self, dim, hidden_dim, dropout=0.):: 这是 FeedForward 类的初始化函数。它接受三个参数:dim 是输入数据的维度,hidden_dim 是隐藏层的维度,dropout 是 dropout 的比率,默认为 0。

  10. super().__init__(): 这行调用了父类 nn.Module 的初始化函数。

  11. self.net = nn.Sequential(: 这行创建了一个 Sequential 容器,用于按顺序组织多个层或操作。

  12. nn.Linear(dim, hidden_dim),: 这行添加了一个线性层,将输入维度为 dim 的数据线性映射到维度为 hidden_dim 的空间。

  13. nn.GELU(),: 这行添加了一个 GELU 激活函数。GELU 是一种激活函数,它在近期得到了广泛的应用,特别是在 Transformer 模型中。

  14. nn.Dropout(dropout),: 这行添加了一个 Dropout 层,以减少模型过拟合的风险。

  15. nn.Linear(hidden_dim, dim),: 这行添加了另一个线性层,将隐藏层的输出映射回原始维度 dim

  16. nn.Dropout(dropout): 这行再次添加了一个 Dropout 层,对输出进行一定比例的随机丢弃。

  17. def forward(self, x):: 这是 FeedForward 类的前向传播函数,它接受输入 x

  18. return self.net(x): 这行调用了之前定义的 Sequential 容器 self.net,将输入 x 传递给其中的每一层,实现了前向传播过程。

2.第二段代码

class Attention(nn.Module
这段代码是用于实现Vision Transformer框架的一部分功能,具体逐行解析如下: 1. `conv_output = F.conv2d(image, kernel, stride=stride)`: 这一行代码使用PyTorch中的卷积函数`F.conv2d`来对输入图像进行卷积操作。 2. `bs, oc, oh, ow = conv_output.shape`: 这一行代码通过`conv_output.shape`获取卷积输出张量的形状信息,其中`bs`表示批次大小,`oc`表示输出通道数,`oh`和`ow`分别表示输出张量的高度和宽度。 3. `patch_embedding = conv_output.reshape((bs, oc, oh*ow))`: 这一行代码通过`reshape`函数将卷积输出张量进行形状变换,将其转换为形状为`(bs, oc, oh*ow)`的张量。 4. `patch_embedding = patch_embedding.transpose(-1, -2)`: 这一行代码使用`transpose`函数交换张量的最后两个维度,将形状为`(bs, oh*ow, oc)`的张量转换为`(bs, oc, oh*ow)`的张量。 5. `weight = weight.transpose(0, 1)`: 这一行代码将权重张量进行转置操作,交换第0维和第1维的位置。 6. `kernel = weight.reshape((-1, ic, patch_size, patch_size))`: 这一行代码通过`reshape`函数将权重张量进行形状变换,将其转换为形状为`(outchannel*inchannel, ic, patch_size, patch_size)`的张量。 7. `patch_embedding_conv = image2emb_conv(image, kernel, patch_size)`: 这一行代码调用了`image2emb_conv`函数,并传入了图像、权重张量和补丁大小作为参数。 8. `print(patch_embedding_conv.shape)`: 这一行代码打印了`patch_embedding_conv`的形状信息。 以上是对Vision Transformer代码逐行解析。
评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值