PCA(主成分分析)不是“筛掉”特征,而是“合并”、“压缩”特征。

🌟 **PCA(主成分分析)确实不是“筛掉”特征,而是“合并”、“压缩”特征。它和传统的特征选择(如 ReliefF、MIC、Lasso)不是一类东西


✅ PCA 不是“删掉特征”,而是“重新组合特征”

想象你有一个数据表,里面有:

  • 风速
  • 转子转速
  • 发电机温度
  • 轴承振动
  • ……等很多传感器变量

这些变量彼此之间可能有重复的信息(冗余)

PCA的思路是:

我不直接删掉这些变量,而是用数学的方法,找出一组新的变量(叫主成分),这些主成分是对原始变量的线性组合,但又能保留最多的信息。

举个例子:

主成分1(PC1) = 0.3×风速 + 0.5×温度 - 0.2×振动 + ...
主成分2(PC2) = -0.4×风速 + 0.1×温度 + 0.7×转速 + ...

🎯 和“特征筛选”最大区别是:

比较项PCA(主成分分析)特征筛选方法(如ReliefF、Lasso等)
🔧 本质作用组合原始特征,生成新特征(降维)选择原始特征子集
🧠 是否可解释主成分不容易直接解释(是组合出来的)保留原始变量,容易解释
🔄 是否有物理含义通常没有,都是线性变换后的结果有,比如“风速重要”或“轴承振动不重要”
📉 是否降维是的(例如100维降成10维)通常不改变维度,只是“筛掉”部分不重要特征
📈 应用场景数据降维、可视化(如t-SNE前处理)、噪声压缩等模型简化、提高泛化能力、特征选择解释性强

✍ 通俗总结:

  • 特征选择 是 “在原来的变量中挑出重要的”;
  • PCA 是 “把所有变量揉合在一起,提取出几个最能代表数据的信息方向”。

❓那什么时候用 PCA,什么时候用特征筛选?

  • 降维 + 保留信息 ➜ 用 PCA
  • 解释变量 + 简化模型 ➜ 用 特征筛选方法(ReliefF、Lasso、F检验等);
  • 有时甚至可以先筛选,再用PCA压缩,组合使用。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值