对话机器人(七)——RASA:基于规则

本文介绍了RASA对话机器人如何处理无法理解的用户输入,包括NLU fallback和策略fallback,以及内建和自定义的意图触发动作。NLU fallback在NLU阶段遇到理解困难时,会触发 utter_please_rephrase 动作,而策略fallback在预测动作不确定时,会执行 action_default_fallback。此外,RulePolicy允许自定义意图来触发特定动作。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1. fallback

解决机器人无法处理的情况。如,用户表达不清楚,超出机器人能提供服务的范围,这时需要“兜底”的fallback操作。

a. NLU fallback

负责处理NLU阶段理解用户意图困难或模糊的情况。FallbackClassifier组件,可见pipline。

如:

pipline: 
   - name: FallbackClassifier
     threshold: 0.6
     ambiguity_threshold: 0.1

若所有意图分类组件预测出的结果中,最高的置信度小于0.6(threshold值)或最高的前2个意图得分之差不超过0.1(ambiguity_threshold),NLU的意图就会被替换成nlu_fallback


                
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值