超简单的pytorch(GPU版)安装教程(亲测有效)

之前安装pytorch框架,直接在pytorch官网复制命令下载。
顺利安装之后,结果发现竟然是CPU版本,导致运行视频流十分卡顿,浪费了GPU。

于是果断卸载

 pip uninstall torch
 pip uninstall torchvision

经过数小时的尝试之后,终于成功安装,现将过程记录分享一下。

1、安装cuda和anaconda
要使用pytorch-GPU,首先确保自己的显卡是英伟达显卡(RTX),然后安装CUDA,这一步其它教程很多。安装好之后要查看自己的CUDA版本,我的是11.1。
anaconda是非常方便的包管理工具。为了防止和其它环境发生冲突。
在安装pytorch之前,可以利用andaconda创建一个新的环境。

conda create -n 环境名 python==版本

之后,激活环境

conda activate 环境名

2、下载pytorch
很多教程是直接让你去官网安装,下载速度慢,效果很不好。一旦中途中断,直接前功尽弃。
这里推荐一个神奇的(网站)
里面涵盖了所有pytorchGPU和CPU的版本,进去手动下载即可。
例如,我的系统是windows,python版本是3.8,cuda是11.1,于是就下载这两个文件
cu111/torch-1.8.0%2Bcu111-cp38-cp38-win_amd64.whl

cu111/torchvision-0.9.0%2Bcu111-cp38-cp38-win_amd64.whl
(如果你的配置和我一样,而下载速度比较慢,我将这两个文件放在了我的公众号内,进入我的公众号“我有一计”,回复pytorch即可获取)

3、安装pytorch
用conda激活环境,使用(pip install + 下载的whl 文件路径)即可安装
这里还有个小坑,第一次安装,安装失败,报错
Could not fetch URL https://pypi.org/simple/typing-extensions/: There was a problem confirming the ssl certificate: HTTPSConnectionPool(host=‘pypi.org’, port=443): Max retries exceeded with url: /simple/typing-extensions/ (Caused by SSLError(SSLEOFError(8, ‘EOF occurred in violation of protocol (_ssl.c:1125)’))) - skipping
查阅资料,找到如下解决方案
进入C:\Users\(你的用户名)\AppData\Roaming文件夹内,新建一个pip文件夹,再进入pip文件夹,创建一个pip.ini的文件,将下面这段内容复制进这个文件

[global]

index-url=http://mirrors.aliyun.com/pypi/simple/

[install]

trusted-host=mirrors.aliyun.com

注:实质上是换源,很多教程使用豆瓣源,但是这里用豆瓣源还是会报错,使用阿里源就不会出错。

4、检测是否安装成功
进入python环境
输入

import torch

print(torch.cuda.is_available())

如果返回True,就代表成功了。

### 安装支持GPUPyTorch 为了在含有CUDA的环境中安装PyTorch并启用GPU加速,需遵循特定步骤来确保兼容性和性能优化。 #### 验证CUDA环境 确认已正确安装CUDA工具包及其路径设置无误。对于Windows用户,在默认情况下,CUDA会被安装到`C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v10.0`这样的目录下[^2]。建议通过命令行运行`nvcc --version`验证编译器本以及整个CUDA环境是否正常工作。 #### 使用Conda管理环境与软件包 推荐采用Anaconda或Miniconda作为Python环境管理者,因其能简化依赖关系处理过程。如果希望自定义环境存储位置(比如D盘),可以在`.condarc`配置文件中指定相应参数,像这样: ```yaml envs_dirs: - D:\miniconda\envs pkgs_dirs: - D:\miniconda\pkgs ``` 此操作允许创建独立于系统其他部分的新环境,并将所有相关数据保存至指定磁盘分区内[^4]。 #### 创建新环境并安装PyTorch-GPU 基于所需的具体CUDA本号,可以从官方渠道获取匹配的PyTorch安装指令。通常来说,最简便的方式是利用预构建好的二进制分发包来进行快速部署。例如,针对CUDA 10.2的支持,可以通过以下命令完成安装: ```bash conda install pytorch torchvision torchaudio cudatoolkit=10.2 -c pytorch ``` 上述命令会自动下载适用于当前系统的PyTorch及相关组件,同时确保它们能够协同运作以充分利用硬件资源。 #### 试CUDA可用性 一旦成功设置了带有GPU支持的PyTorch环境,则可通过简单试脚本来检验一切是否就绪。启动Anaconda Prompt或其他终端模拟器后执行下列语句: ```python import torch print(torch.cuda.is_available()) ``` 当返回值为True时即表明CUDA已被识别并且可以用于后续计算任务;反之则可能意味着某些环节存在问题需要排查解决[^3]。
评论 26
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

zstar-_

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值