90. 64位整数乘法

本文介绍了快速幂算法的两种实现方式:一种是通过位运算逐步计算幂的结果并取模,另一种是利用模的定义来简化计算过程。这两种方法都能有效地解决大数幂运算的问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

原题链接

根据快速幂的思想

b=(b1*1+b2*2+b3*4...+bn*2^n-1)

res=a*(b1*1+b2*2+...)

#include <iostream>
#include <algorithm>
using namespace std;
typedef long long ll;

int main()
{
    ll a,b,p;
    cin>>a>>b>>p;
    ll res=0;

    while(b)
    {
        if(b&1)
        {
            res=(res+a)%p;
        }
        b>>=1;
        a=a*2%p;
    }
    cout<<res%p;
    return 0;
}

应用模的定义出发

由于 a%b=a-(a/p)*p   (a/b是下取整)

那么 a*b%p=a*b-(a*b/p)*p

a*b和(a*b/p)*p 的差一定是在 0~p-1 之间的

如果res=a*b%p <0 res+=p;        

        res>=p res-=p;
 

#include <iostream>
#include <algorithm>
using namespace std;
typedef long long ll;
int main()
{
    ll a,b,p;
    cin>>a>>b>>p;
    ll c=(long double)a*b/p;
    ll res=a*b-c*p;
    if(res<0) res+=p;
    else if (res>=p) res-=p;
    cout<<res;
    return 0;
    
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值