利用YOLO算法对风力涡轮机叶片图像进行损伤标注与检测

项目概述

专注于利用YOLO算法对风力涡轮机叶片图像进行损伤标注与检测。项目核心目标是通过公开的AI生成叶片损伤模拟数据训练目标检测模型,最终实现对现实世界中风力涡轮机叶片损伤的自动识别。用户可通过指定途径获取相关数据,或直接使用仓库中的模型权重文件(best.pt)对自有数据进行损伤推断。
在这里插入图片描述

损伤检测类型

仓库所涉及的风力涡轮机叶片损伤类型包括:

  • 裂纹(Crack)
  • 腐蚀(Corossion)
  • 孔洞(Hole)
  • 剥落(Spalling)
    在这里插入图片描述

仓库文件结构与提交信息

在这里插入图片描述

主要文件夹

  • images:存储风力涡轮机叶片相关图像数据
  • json_data:存放以json格式记录的数据信息
  • labels:包含与图像损伤标注相关的标签文件
  • runs/ detect:可能包含模型运行检测过程中的输出或日志

关键文件

  • README.md:项目说明文档,5个月前有更新记录
  • best.pt:模型权重文件,提交信息为“tidied up a bit”,更新于5个月前
  • classes.txt:记录损伤类型的类别信息,提交信息为“continuing work, have failing yolo”,5个月前更新
  • dataset.yaml:与数据集配置相关的文件,提交信息同classes.txt,5个月前更新
  • yolo_json_formatting.ipynbyolo_notebook.ipynb:用于数据处理、模型训练或测试的Jupyter Notebook文件,5个月前更新,提交信息为“updated and running”
  • yolov8n.ptyolov8s.pt:YOLOv8系列的预训练模型文件,5个月前更新,提交信息为“updated and running”

提交记录特点

所有文件的最近提交时间均为5个月前,期间无新的更新活动。多数文件的提交信息集中在“updated and running”(更新并运行中)和“continuing work, have failing yolo”(持续工作中,YOLO存在问题)两类。

  • 主要开发语言:Jupyter Notebook(占比100%)

页面加载情况

页面加载过程中多次出现错误提示:“Uh oh! There was an error while loading. Please reload this page”,可能影响部分内容的正常浏览。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值