项目概述
专注于利用YOLO算法对风力涡轮机叶片图像进行损伤标注与检测。项目核心目标是通过公开的AI生成叶片损伤模拟数据训练目标检测模型,最终实现对现实世界中风力涡轮机叶片损伤的自动识别。用户可通过指定途径获取相关数据,或直接使用仓库中的模型权重文件(best.pt)对自有数据进行损伤推断。
损伤检测类型
仓库所涉及的风力涡轮机叶片损伤类型包括:
- 裂纹(Crack)
- 腐蚀(Corossion)
- 孔洞(Hole)
- 剥落(Spalling)
仓库文件结构与提交信息
主要文件夹
- images:存储风力涡轮机叶片相关图像数据
- json_data:存放以json格式记录的数据信息
- labels:包含与图像损伤标注相关的标签文件
- runs/ detect:可能包含模型运行检测过程中的输出或日志
关键文件
- README.md:项目说明文档,5个月前有更新记录
- best.pt:模型权重文件,提交信息为“tidied up a bit”,更新于5个月前
- classes.txt:记录损伤类型的类别信息,提交信息为“continuing work, have failing yolo”,5个月前更新
- dataset.yaml:与数据集配置相关的文件,提交信息同classes.txt,5个月前更新
- yolo_json_formatting.ipynb、yolo_notebook.ipynb:用于数据处理、模型训练或测试的Jupyter Notebook文件,5个月前更新,提交信息为“updated and running”
- yolov8n.pt、yolov8s.pt:YOLOv8系列的预训练模型文件,5个月前更新,提交信息为“updated and running”
提交记录特点
所有文件的最近提交时间均为5个月前,期间无新的更新活动。多数文件的提交信息集中在“updated and running”(更新并运行中)和“continuing work, have failing yolo”(持续工作中,YOLO存在问题)两类。
- 主要开发语言:Jupyter Notebook(占比100%)
页面加载情况
页面加载过程中多次出现错误提示:“Uh oh! There was an error while loading. Please reload this page”,可能影响部分内容的正常浏览。