🌊 洪水检测与水量估算🌊 洪水检测与水量估算 🌊 洪水检测与水域估算
该项目专注于利用深度学习技术,从卫星或航空图像中检测受洪水影响的区域,并估算水域覆盖范围。它整合了多种卷积神经网络架构,包括LeNet、ResNet、VGG和U-Net,以执行图像分割和分类任务。该项目专注于利用深度学习技术,从卫星或航空图像中检测受洪水影响的区域,并估算水域覆盖范围。它整合了多种卷积神经网络架构,包括LeNet、ResNet、VGG和U-Net,以执行图像分割和分类任务。该项目专注于利用深度学习技术,从卫星或航空图像中检测受洪水影响的区域,并估算水域覆盖范围。它整合了多种卷积神经网络架构,包括LeNet、ResNet、VGG和U-Net,以执行图像分割和分类任务。
🔍 主要特点🔍 主要特点 🔍 主要特点
- 使用U-Net进行图像分割,以识别水体和洪水淹没区域。使用U-Net进行图像分割,以识别水体和洪水淹没区域。使用U-Net进行图像分割,以识别水体和洪水淹没区域。
- LeNet、ResNet和VGG模型的比较,以评估洪水检测的性能。LeNet、ResNet和VGG模型的比较,以评估洪水检测的性能。LeNet、ResNet和VGG模型的比较,以评估洪水检测的性能。
- 预训练模型集成(
model.h5
)用于快速推理。预训练模型集成(model.h5
)用于快速推理。预训练模型集成(model.h5
)用于快速推理。 - 使用Python(
ui1.py
、ui2.py
)构建的交互式用户界面,便于用户进行可视化操作与测试。使用Python(ui1.py
、ui2.py
)构建的交互式用户界面,便于用户进行可视化操作与测试。使用Python(ui1.py
、ui2.py
)构建的交互式用户界面,便于用户进行可视化操作与测试。 - 生成的掩膜(
generated_mask.png
),用于可视化检测到的洪水区域。生成的掩膜(generated_mask.png
),用于可视化检测到的洪水区域。生成的掩膜(generated_mask.png
),用于可视化检测到的洪水区域。
🛠️ 技术栈🛠️ 技术栈 🛠️ 技术栈
- PythonPython Python
- 深度学习(Keras/TensorFlow)深度学习(Keras/TensorFlow) 深度学习(Keras/TensorFlow)
- 图像处理图像处理 图像处理
- PureBasic(用于用户界面组件)PureBasic(用于用户界面组件) PureBasic(用于用户界面组件)
- Streamlit(云端)Streamlit(云端) Streamlit(云端)
📦 安装设置📦 安装设置 📦 安装设置
使用以下命令安装依赖项:使用以下命令安装依赖项:使用以下方式安装依赖项:
pip install -r requirements.txt