二叉搜索树的第k个节点
描述
给定一棵结点数为n 二叉搜索树,请找出其中的第 k 小的TreeNode结点值。
- 返回第k小的节点值即可
- 不能查找的情况,如二叉树为空,则返回-1,或者k大于n等等,也返回-1
- 保证n个节点的值不一样
数据范围:
进阶:空间复杂度 O(n)O(n),时间复杂度 O(n)O(n)
如输入{5,3,7,2,4,6,8},3时,二叉树{5,3,7,2,4,6,8}如下图所示:
该二叉树所有节点按结点值升序排列后可得[2,3,4,5,6,7,8],所以第3个结点的结点值为4,故返回对应结点值为4的结点即可。
示例1
输入:
{5,3,7,2,4,6,8},3
返回值:
4
示例2
输入:
{},1
返回值:
-1
备注:当树为空的时候。
解法思路
通过二叉树的中序遍历将节点进行排序,存放至线性结构(数组)中即可。
解法1
/**
* struct TreeNode {
* int val;
* struct TreeNode *left;
* struct TreeNode *right;
* TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
* };
*/
class Solution {
public:
/**
* 代码中的类名、方法名、参数名已经指定,请勿修改,直接返回方法规定的值即可
*
*
* @param proot TreeNode类
* @param k int整型
* @return int整型
*/
vector<int> arr;
//通过递归来对二叉树进行中序遍历
void Inorder(TreeNode* pHead) {
if(pHead)
{
Inorder(pHead->left);
arr.push_back(pHead->val);
Inorder(pHead->right);
}
}
int KthNode(TreeNode* proot, int k) {
if (nullptr == proot ||
(proot->left == nullptr && proot->right == nullptr && k != 1) ||
k == 0)return -1;
Inorder(proot);
if (arr.size() < k)return -1;
return arr[k - 1];
}
};
解法2
/**
* struct TreeNode {
* int val;
* struct TreeNode *left;
* struct TreeNode *right;
* TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
* };
*/
class Solution {
public:
/**
* 代码中的类名、方法名、参数名已经指定,请勿修改,直接返回方法规定的值即可
*
*
* @param proot TreeNode类
* @param k int整型
* @return int整型
*/
vector<int> arr;
//通过栈结构实现对二叉树的中序遍历
void Inorder(TreeNode* pHead) {
stack<TreeNode*> stack;
TreeNode* tempNode, *pStart = pHead;
while (pStart || !stack.empty()) {
if (pStart) {
stack.push(pStart);
pStart = pStart->left;
} else {
tempNode = stack.top();
arr.push_back(tempNode->val);
stack.pop();
pStart = tempNode->right;
}
}
}
int KthNode(TreeNode* proot, int k) {
if (nullptr == proot ||
(proot->left == nullptr && proot->right == nullptr && k != 1) ||
k == 0)return -1;
Inorder(proot);
if (arr.size() < k)return -1;
return arr[k - 1];
}
};