- 博客(11)
- 收藏
- 关注
原创 多模态 AI 如何破解小市值股票的极端波动密码
摘要:本文介绍了一种名为MSSFNet的多尺度多模态股票预测模型,专门针对A股小市值股票(市值<100亿)的极端波动问题。该模型通过融合K线图、投资者评论和宏观经济等多源异构数据,采用动态加权情感分析和跨模态融合技术,显著提升了预测精度。实验显示,模型在5天、20天和60天的预测中准确率分别达66.2%、61.9%和57.5%,年化收益率9.2%,最大回撤仅16.4%。该技术的核心逻辑可迁移至可转债、加密货币等多个金融场景,为投资决策提供更精准的数据支持。(149字)
2025-08-14 09:59:28
913
原创 从被动疏导到主动调控:多模态时空大模型开启智能交通2.0时代
摘要:本文介绍了刘伟团队研发的多模态时空大模型架构,该技术通过差异化数据预处理、分层融合机制和动态时空图注意力网络(DST-GAT),实现了交通流的精准预测与边缘设备实时部署。该架构攻克了多源异构数据时空对齐难题,采用结构化剪枝和量化压缩技术将模型体积从850MB压缩至120MB,推理时间缩短至48ms。系统构建了"预测-决策-执行-反馈"闭环控制,使交通管理从"事后应对"转向"事前预知",为城市智慧交通提供了创新解决方案。研究成果由天津市多模态数
2025-08-12 16:15:32
687
原创 解密医疗多模态机器学习:从技术内核到临床落地的全路径指南
本文探讨了多模态机器学习技术在医疗领域的应用与发展。文章指出,医疗数据天然具有多模态特性,包括影像、文本、信号等多种类型,而传统单模态AI难以充分挖掘这些异构数据间的关联。多模态技术通过五大核心方法(表示、融合、转换、对齐、协同学习)实现跨模态信息整合,并详细介绍了从场景选择到临床部署的六步实施流程。文章还分析了算力基础设施和算法工具链的技术支撑,以及该技术在肿瘤诊疗、神经疾病、慢性病管理等医疗全流程中的创新应用,展示了多模态AI如何通过数据融合提升诊疗效率和精准度。
2025-08-10 11:51:06
820
原创 多模态大模型“全维度感知”重塑输电线路巡检
摘要:国网冀北电力研发多模态智能巡检系统,通过融合可见光、红外、声纹数据实现输电线路缺陷精准识别。系统采用光热声一体化分析,将温度异常、图像特征与声纹频谱关联,缺陷诊断准确率提升15%;创新大小模型协同训练策略,解决稀缺样本难题;运用边缘智能压缩技术,实现10:1数据压缩比,巡检效率提升40%。该技术可延伸至变电站、油气管道等多场景检测,形成工业智能检测通用方案。天津市多模态数据技术研究院正推动相关技术成果转化与产学研合作。
2025-08-08 15:00:42
341
原创 从单一声波到多模态智能,AI重构呼吸音检测临床诊断新范式
摘要:一项突破性研究将元数据与多模态技术融合,创新了呼吸音检测方法。M-CNN框架通过Inception模块和多监督对比学习,将患者年龄、性别等类别型元数据与梅尔频谱特征结合,检测准确率达59.48%。进阶的BTAM框架引入文本元数据,通过BERT模型提取语义特征并与音频特征融合,综合评分提升至63.54%。配套的智能检测系统实现了从数据采集到辅助诊断的全流程智能化,在临床测试中展现出实用价值。该技术为呼吸系统疾病早期诊断提供了新思路,未来将向轻量化、细粒度方向发展。
2025-08-08 14:57:39
653
原创 从“漏检”到“全看穿”:自动驾驶的 “致命盲区”,终于有解了
BEV-MFDet突破自动驾驶感知瓶颈 【核心突破】 创新性采用BEV视角统一多模态数据,解决图像与点云"语言不通"问题 开发全局注意力融合模块,动态调整不同传感器的权重分配 小目标检测精度显著提升,KITTI数据集上自行车识别精度提高2.51% 【技术亮点】 通过三维视锥体特征转换实现图像BEV特征构建 点云处理采用空间注意力模块强化稀疏点云学习 极端场景下汽车类检测精度提升4.87% 【应用前景】 已拓展至智能交通、工业仓储、无人机巡检等领域,可降低80%以上的AGV碰撞风险
2025-08-03 11:13:25
306
原创 从“猜情绪”到“懂人心”:DFIHMF模型让多模态情感识别精度跨越式提升
多模态情感识别技术迎来重大突破,DFIHMF模型通过"双令牌+层次化融合"创新设计,有效解决了传统方法中模态割裂和特征单一的问题。该模型引入跨模态交互令牌(CIT)实现模态间动态沟通,配合本地知识令牌(LKT)记录多层级信息,在CMU-MOSI和MOSEI数据集上取得显著性能提升,七分类任务准确率最高提升7.8%。这一突破标志着情感识别正从"机械判断"向"深度理解"演进,为智能交互系统赋予更精准的情感认知能力。
2025-08-03 11:08:51
388
原创 地下200米黑暗中,机器人靠什么“看清”危险?这项多模态技术给出答案
研究人员提出了一种面向地下环境的轻量化多模态目标检测方法,通过改进YOLOv8网络,设计双分支结构和StarFusion融合模块,实现了RGB图像与LiDAR点云的高效特征融合。该方法在保证检测精度的同时大幅降低参数量,在自建地下数据集Underground上达到86.9%的mAP值,推理速度达20帧/秒,能有效应对低光照、粉尘等地下环境挑战。实验表明,该技术可显著提升地下机器人感知能力,为智能巡检等应用提供了可靠解决方案。
2025-08-02 20:10:05
416
原创 “查数两小时”到“秒级获取”:时空数据图谱如何解救基层数据工作者
摘要:时空数据图谱技术正破解多源时空数据"碎片化"难题,通过构建"节点-边"语义网络实现数据智能关联。该技术具备三大优势:统一语义标准消除"数据打架"、全生命周期追溯保障数据可信、智能推理实现动态决策支持。在自然资源管理中,它使"一张图"从数据集合升级为智能平台,可自动识别规划矛盾、排查权属问题;在城市治理、应急指挥等领域,也能通过时空关联优化决策。这项技术正推动数字化转型从"数据驱动"迈向"知识驱
2025-08-02 20:09:18
329
原创 6G通信“未卜先知”?数字孪生信道实现“无线预判”
6G时代数字孪生信道的三大核心技术突破 随着6G通信发展,数字孪生信道(DTC)技术成为实现毫米级精准通信的关键。该技术通过三大核心突破:多模态感知系统整合激光雷达、相机等设备构建3D全息环境模型;无线环境知识(WEK)建立信号传播的因果关系数据库;信道大模型(ChannelLM)实现小样本学习与多任务处理。目前已在工业物联网和车联网场景验证价值,能提前0.5秒预测信道变化,降低80%通信中断概率,未来将扩展至智慧城市、远程医疗等领域,推动6G通信从"被动适应"到"主动预判&q
2025-08-02 20:08:16
291
原创 从首钢园的“眼神” 里,藏着能让商业空间客流翻倍的技术密码
更关键的是,它能区分 “有效关注” 和 “无效停留”—— 比如男性对水生植物的高注视频率,不是单纯 “喜欢”,而是对 “生态 + 科技” 复合景观的探索欲,这为后续设计提供了精准方向。而现在,一种能 “读懂眼神”“量化感受” 的多模态数据分析技术,正在把这种逻辑变成可落地的设计方案 —— 它不仅解开了首钢园里男女游客的 “视觉偏好密码”,更让商业空间、文旅项目、城市更新有了 “精准设计” 的新可能。多模态数据分析的 “靠谱”,来自它对 “主观感受”的“客观拆解”。
2025-08-02 20:06:51
229
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人