
地面分割
文章平均质量分 92
专注点云地面分割算法的研究和前沿技术的跟踪,同时对一些相关算法进行复现。
点云登山者
永远保持一颗学徒心️
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
地面分割(四)
将点云分为地面和非地面测量是从机载 LiDAR(光探测和测距)数据生成数字地形模型 (DTM) 的重要步骤。但是,大多数过滤算法需要仔细设置许多复杂的参数才能实现高精度。在本文中,提出了一种新的过滤方法,它只需要几个易于设置的整数和布尔参数。在所提出的方法中,将 LiDAR 点云倒置,然后使用刚性布料覆盖倒置的表面。通过分析布料节点和相应的 LiDAR 点之间的交互,可以确定布料节点的位置,从而生成地表的近似值。最后,通过比较原始 LiDAR 点和生成的表面,可以从 LiDAR 点云中提取地面点。使用 IS原创 2025-01-06 17:03:11 · 317 阅读 · 0 评论 -
地面分割(三)
3D 点云上的地面分割是许多应用的基础,例如 SLAM 和对象分割。由于它通常是这些应用程序的预处理模块,因此高效率和准确性是保证整个系统性能的基本要求。为此,作者避免了 3D 点云上的地面拟合和区域划分。提出了一种基于像素图像的方法,该方法将 3D 点云投影到两个圆柱形图像上,即水平范围图像和 z 图像,然后根据它们进行分割。为了实现快速准确的地面分割,首先引入了基于图像特征的创新设计。具体来说,考虑了 LiDAR 模型改进了坡度特征,并建议将特征与不同大小的感受野相结合,以更好地识别地面。然后,根据这原创 2025-01-06 16:54:21 · 251 阅读 · 0 评论 -
地面分割(二)
在利用 3D LiDAR 传感器的 3D 感知领域,地面分割是行驶区域检测和目标识别等各种用途的必不可少的任务。在这种情况下,人们提出了几种地面分割方法。但是,仍会遇到一些限制。首先,一些地面分割方法需要根据周围环境对参数进行微调,这非常费力和耗时。此外,即使参数调整得当,仍然会出现部分欠分割问题,这意味着某些地区的地面分割失败。最后,当地面位于其他结构(例如挡土墙)上方时,地面分割方法通常无法估计合适的地平面。为了解决这些问题,该文章提出了一种地面分割算法,在参数设置上,设计了更多基于数据的自适应参数,与原创 2025-01-06 16:23:20 · 128 阅读 · 0 评论 -
地面分割(一)
运行频率超过 40 Hz。正如在 SemanticKITTI 和粗糙地形数据集上的实验验证的那样,与最先进的方法相比,提出的方法产生了较好的性能,与现有的基于平面拟合的方法相比,显示出更快的速度。原创 2025-01-06 16:13:17 · 187 阅读 · 0 评论 -
登山第十梯:地面分割——跨越山河的邻居
在将 Savitsky-Golay 滤波器应用于角度图像的列后,从期望属于 ground 的行开始,并使用广度优先搜索将相似的成分一起标记,然后对角度图进行地面标记。不幸的是, LIDAR 传感器在距离测量中会产生大量异常值,LEONARD 等人(2008 年)的工作中有更详细的讨论,这会影响角度α的计算。该方法快速而简单,并且利用距离图解决了因点云稀疏引起的邻域大小难以确定的问题,并通过类似于坡度的特征,实现了低曲率地面的提取。,其中每个角度都代表连接两点 A 和 B 的线的倾斜角,如上图所示。原创 2024-09-20 23:11:41 · 803 阅读 · 0 评论