
numpy
文章平均质量分 65
numpy
克豪
这个作者很懒,什么都没留下…
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
numpy随机数
numpy.random函数功能描述返回值np.random.rand(d0,d1,…,dn)元素在[0,1)区间均匀分布的数组浮点数np.random.uniform(low,hige, size)元素在[low,hige)区间均匀分布的数组浮点数numpy.random.randint(low,hige, size)元素在[low,hige)区间均匀分布的数组整数np.random.randn(d0,d1,…,dn)产生标准正态分布的数组浮点数原创 2020-07-07 15:54:38 · 1402 阅读 · 0 评论 -
numpy矩阵的使用
numpy中矩阵和数组的对比数组可以实现矩阵的所有功能,但是矩阵在实现一些功能的时候操作更加简便,比如矩阵的乘法直接使用A*B而不是使用函数,但是数组可以更加灵活的处理各种数据,而且可以表示高维数组,速度更快numpy.matrix创建矩阵matrix ( 字符串/列表/元组/数组 )mat ( 字符串/列表/元组/数组 )a= np.matrix('1 2 3;4 5 6')b = np.mat([ [1,2,3], [4,5,6]])print(a)print(typ原创 2020-07-07 15:34:48 · 248 阅读 · 0 评论 -
numpy之where的用法
1、numpy.where的返回结果numpy.where调用方式为numpy.where(condition,1,2)满足条件的位置上返回结果1,不满足的位置上返回结果2 例如通过where()函数将a数组中负值设为0,正值不变如果没有指定返回结果,只有查找条件则返回满足条件的位置。返回的结果是一个元组(tuple),包含两个数组,第一个数组纪录的是行,第二个数组纪录的是列。可以使用zip函数将返回的位置组成一个个坐标对,方便调用。zip函数直接返回的是一个对象,可以用过for循环转载 2020-07-04 12:50:37 · 21028 阅读 · 0 评论 -
numpy的复制
b=ab和a是对同一个对象的引用,互相影响b = a[:]b和a不是同一对象,b是a的切片,但是b和a的数据会相互影响b = a.copy()b是a拷贝,a和b互不影响In [1]: import numpy as npIn [2]: a = np.arange(12).reshape(3,4)In [3]: aOut[3]:array([[ 0, 1, 2, 3], [ 4, 5, 6, 7], [ 8, 9, 10, 11]])I.原创 2020-07-04 11:38:33 · 248 阅读 · 0 评论 -
numpy读取本地数据,转置和切片索引
读取本地数据import numpy as npfile_name = r'E:\workspace\Python\data_analyze\numpy\csv_data.csv't1 = np.loadtxt(file_name,"int",delimiter=",")print(t1)t2 = np.loadtxt(file_name,"int",delimiter=",",unpack=True)print(t2)第一个参数是文件名(不知道为什么我的电脑上,如果使用相对路径就会原创 2020-07-04 11:31:45 · 460 阅读 · 0 评论 -
Numpy轴的概念
numpy中轴的概念是可以认为是数组的维度的概念a = np.arange(24).reshape(2,3,4)aarray([[[ 0, 1, 2, 3], [ 4, 5, 6, 7], [ 8, 9, 10, 11]], [[12, 13, 14, 15], [16, 17, 18, 19], [20, 21, 22, 23]]])np.max(a,axis=0)array([[12, 13,原创 2020-07-03 18:46:30 · 606 阅读 · 0 评论 -
numpy不同维度的数组进行运算
numpy中不同维度的数组进行相加的时候,只要其中一个数组的维度是另一个数组的子维度,那么他们就可以进行运算,相当于把低维数组通过复制,升级到高维,然后再进行运算比如:a = np.arange(24).reshape(4,6)aarray([[ 0, 1, 2, 3, 4, 5], [ 6, 7, 8, 9, 10, 11], [12, 13, 14, 15, 16, 17], [18, 19, 20, 21, 22, 23]])b原创 2020-07-03 18:26:41 · 3835 阅读 · 0 评论 -
numpy的基础使用
目录numpy的属性numpy创建array指定类型创建特定数据基础运算数值运算统计求和、最小值、最大值根据统计方法求索引平均值、中位数累加累差运算返回数组中非零元素的索引值数组排序矩阵运算矩阵的乘法矩阵的转置切割索引一维索引二维索引对行遍历对列遍历迭代输出Array的合并array的分割等量分割不等量的分割错误的分割不等量分割正确的开启方式其他的分割方式Numpy copy & deep copyimport numpy as npnumpy的属性array = np.array([.原创 2020-06-30 12:19:12 · 1011 阅读 · 0 评论 -
转载 Python学习--个人理解numpy的cumsum函数
来源:https://blog.csdn.net/yuansuo0516/article/details/78331568/ Cumsum :计算轴向元素累加和,返回由中间结果组成的数组重点就是返回值是“由中间结果组成的数组”以下代码在python3.6版本运行成功!下面看代码,定义一个2*2*3的数组,所以其shape是2,...转载 2018-12-24 14:50:19 · 400 阅读 · 0 评论