1x1 卷积的作用

本文探讨了深度学习中1x1卷积核的作用及其应用方式。通过1x1卷积可以实现特征图维度的变化,既可用于升维也可用于降维,并能有效减少参数量。此外还介绍了其在通道层面提取信息的能力及存在的局限。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

最近在深度学习中经常会看到1x1的卷积操作,因此很好奇它具体的作用是什么?

1.视频
视频取自启释科技
s1*1卷积在做什么?它是如何被提出,在深层神经网络中又发挥什么样的作用?_哔哩哔哩_bilibili

2.通过升维或者降维,调整输出的维度

3.相比于直接进行卷积操作,可减小参数量

 

 如bottleneck中先使用1*1卷积降维到64d,然后再接上常规卷积操作,输出维度不变,但是参数量减小

4.提取通道关联信息

 因为1*1卷积本身就是再通道层面进行卷积,相当聚合了通道的信息。

缺点

感受野较小

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值