无符号整型数0减1

文章讨论了在无符号整数运算中,尝试将0减1可能导致的内存溢出问题,指出这会导致程序界面卡死、内存消耗过大并最终引发崩溃。作者强调了避免使用无符号整型进行此类操作的重要性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

无符号数0减1等于多少?

对于无符号整数来说,0是最小值,一般不能再减1了。因为无符号整数不能表示负数,当无符号数再减1时,会发生下溢,即最高位变为1,最低位变为0,结果变成一个非常大的正整数

莫名奇妙的内存溢出 Crash

在运行如下代码段时,会遇到界面卡死,内存疯狂被消耗的问题,过一会 App 就崩溃了。

		NSArray *array = [NSArray array];
    NSUInteger count = array.count; // 无符号整型=0
    for (int i = 0; i< count - 1; i++) {  //无符号整型0-1 = NSIntegerMax(64位机子上long_max:9223372036854775807)
        NSLog(@"index: %d",i);
        // 代码块
        // 所以这里就是执行超级多次,直到内存满了Crash
    }

结论

如果要进行操作计算的变量。应该避免使用无符号整型,避免整数下溢,变为最大值,导致逻辑异常(甚至内存崩溃)。

### 无符号数法运算实现方式 无符号数法运算是通过将其转化为加法来完成的。具体而言,可以通过以下过程实现:将按位取反后再加1,从而获得该的补码形式[^3]。随后,将这个补码与被相加即可完成法操作。 #### 法的具体步骤 以下是无符号数法的核心步骤: 1. **获取补码**:对执行按位取反(即将每一位上的`0`变为`1`,`1`变为`0`),然后再对该结果加上`1`。 2. **转为加法**:将上述得到的补码与被进行普通的二进制加法运算。 3. **溢出判断**:由于无符号数不存在负值的概念,在法过程中可能会发生溢出情况。当最高位未产生进位时,则表明发生了溢出现象[^3]。 #### 示例代码展示 下面是一个简单的C++程序片段用于演示如何利用补码机制来进行两个8比特无符号整型变量间的法: ```cpp #include <iostream> using namespace std; unsigned char subtract(unsigned char a, unsigned char b){ // Compute two's complement of 'b' unsigned char twosComplementB = ~b + 1; // Perform addition between 'a' and the computed value above. return (a + twosComplementB); } int main(){ unsigned char num1 = 5; // Binary: 00000101 unsigned char num2 = 7; // Binary: 00000111 cout << "Result of subtraction is : "<< static_cast<int>(subtract(num1,num2))<< endl; } ``` 此段代码展示了基本原理——先计算第二个参(`num2`)对应的补码,之后再同第一个参一起送入标准加法器中运行得出最终差值。 ### 结果解释注意事项 需要注意的是,因为这里讨论的对象都是无符号类型的字,所以即使实际物理层面完成了所谓的“借位”,但由于缺乏相应标志位的支持以及定义域的不同,我们仅能依据特定条件下的CF(Carry Flag)状态判定是否存在越界状况而已[^4]。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值