spark-streaming使用spark-ML模型实时预测

不得不说Spark是一款优秀的计算引擎,继承Spark-ML、Spark-Graphx机器学习和图计算框架,Spark-ML一般用于离线分析和挖掘,生成模型。
在这里插入图片描述如果我们把模型保存在HDFS,需要在实时计算里面使用提前训练好的模型,
解决方案如下:
1、通过转换序列化方式,把模型转换成可以被其他语言调用的方式,如:java、python
2、在spark-streaming中使用
具体读取kafak的配置信息和保证EOS的不在这里体现,主要体现如何使用Spark-ML训练好的模型,具体代码如下:

val spark = SparkSession.builder().
      appName("StreamingMLModel").
      getOrCreate()

    import spark.implicits._
    val ssc = new StreamingContext(spark.sparkContext, Seconds(2))
    val bootstrapServer = ""
    val groupId = "E30E62E2-8B73-BBB0-AA8C-1A53E400646F-1"

    val kafkaParams = Map(
      ConsumerConfig.BOOTSTRAP_SERVERS_CONFIG -
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值