
机器人工程师带你入门SLAM
文章平均质量分 89
笔者自985硕士毕业后,在机器人算法领域已经深耕 7 年多啦。这段时间里,我积累了不少宝贵经验。本专栏将结合 上面的SLAM 知识体系思维导图及多年的工作实战总结,将尽力把每一块知识都用最通俗易懂的方式讲给大家,并带上实际应用的程序案例。
行知SLAM
笔者自985硕士毕业后,在机器人算法领域已经深耕7年多啦。大家可以在同名【公众号】“机器人及自动驾驶”获取实时技术文章及思维导图pdf版本,并找到星球伙伴一起学习进步。
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
第5.4章 SLAM实战:使用std::chrono计算传感器消息时间戳
摘要:本文介绍了C++11中std::chrono时间库在机器人及自动驾驶定位中的应用。重点分析了三种时钟类型:system_clock(系统时间)、steady_clock(稳定计时)和high_resolution_clock(高精度时钟)的特性与适用场景。通过代码示例详细讲解了如何使用steady_clock获取微秒级时间戳,包括时间点转换、纪元时间计算和单位转换等关键操作。文章还提供了简化后的时间获取函数,并强调在定位系统中选择合适时钟类型(如steady_clock保证单调性)和精确时间单位的重要原创 2025-06-17 11:01:04 · 218 阅读 · 0 评论 -
第5.3章 SLAM实战:欧拉角旋转方向到底是顺时针为正还是逆时针为正?如何定义正负的?
欧拉角中Z轴分量为-89.965°旋转方向:绕Z轴的负方向(顺时针)旋转约89.97°;与正方向的区别:若分量为+89.965°,则为绕Z轴正方向(逆时针)旋转。该方向判定与欧拉角的定义(右手定则)和符号约定直接相关,与具体旋转顺序(ZYX)中的其他轴无关。原创 2025-06-16 14:35:05 · 272 阅读 · 0 评论 -
第5.2章 传感器时间戳同步实战:组合导航GPS时间转为Unix时间作为IMU、激光点云等消息的观测时间
本文解析了GPS时间与Unix时间的转换原理及注意事项。GPS时间从1980年1月6日起算,由周数和周内秒数组成;Unix时间从1970年1月1日起算。两者转换需考虑315964782秒的起始时间差和闰秒调整(GPS包含闰秒而Unix忽略)。关键区别在于:GPS时间采用连续计时且存在1024周溢出问题,Unix时间广泛用于计算机系统。实现转换时需注意周计数器修正、精度损失等问题,建议使用专业库处理并定期更新闰秒信息,特别是在高精度应用中需谨慎处理时间同步误差。原创 2025-06-13 14:10:40 · 719 阅读 · 0 评论 -
第3.2.2章 什么时候使用Eigen::Isometry3d还是Affine3d:详解与选择指南
选择Isometry3d还是Affine3d取决于你的变换是否需要保持刚体性质。如果仅涉及旋转和平移,优先使用Isometry3d,它更高效且语义明确;如果需要缩放、剪切等更复杂的变换,则使用Affine3d。合理选择类型可以提高代码的安全性、可读性和性能。原创 2025-06-10 16:06:49 · 303 阅读 · 0 评论 -
第3.2.1章 Eigen代码实战:四元数赋值用法总结及与变换矩阵转换
Eigen库中四元数(Quaternion)的赋值方法解析:Quaterniond和Quaternion<double>本质相同,但Quaterniond是更简洁的别名。主要赋值方式包括直接构造(w,x,y,z分量、旋转矩阵或轴角)、赋值运算符和成员函数赋值。使用时需注意参数顺序、归一化处理和头文件包含,常见错误包括模板参数缺失和构造顺序错误。四元数广泛应用于旋转矩阵转换、姿态组合等场景,合理选择赋值方式能提高代码可读性和正确性。原创 2025-06-10 14:29:26 · 329 阅读 · 0 评论 -
第5.1章 自动驾驶工程实战:如何将INS传感器在ENU坐标系下的速度转换为车身RFU坐标系下的速度?
本文详细介绍了机器人及自动驾驶中坐标系转换的原理与应用。重点分析了ENU(东-北-上)和RFU(右-前-上)两种坐标系,以及使用四元数进行坐标系旋转转换的方法。文章指出,通过四元数的逆操作可以正确实现ENU到RFU的速度向量转换,并具体解析了代码实现过程,包括速度分量提取和转换验证。最后强调了四元数归一化、坐标系一致性和性能优化等注意事项,为自动驾驶系统中的坐标系转换提供了实用的技术指导。原创 2025-06-05 16:16:25 · 48 阅读 · 0 评论 -
第3.7.1章 Protocol Buffers在机器人自动驾驶中的工程应用,附代码实例
摘要:Protocol Buffers(Protobuf)在机器人自动驾驶系统中发挥着核心作用,解决了异构模块间高效数据传输的挑战。相比ROS消息,Protobuf具有序列化效率高、跨语言兼容性强、扩展性好等优势,适用于传感器数据处理、模块间通信及数据记录等场景。实践表明,合理设计消息结构并优化性能后,Protobuf能显著提升自动驾驶系统的处理效率和可靠性,同时保持与ROS生态的无缝集成。原创 2025-05-30 11:20:08 · 168 阅读 · 0 评论 -
第3.7 章 Google开源数据协议Protocol Buffers 概述及代码入门
Protocol Buffers(简称Protobuf)是Google开发的一种语言无关、平台无关、可扩展的序列化数据格式。它通过定义数据结构(.proto文件),生成高效的序列化代码,广泛用于通信协议、数据存储等场景。在机器人自动驾驶系统工程中,Protocol Buffers(简称 Protobuf)作为核心数据传输与存储方案,发挥着至关重要的作用。核心优势高性能:序列化/反序列化速度远快于XML/JSON二进制格式:数据体积小,传输效率高强类型:编译时类型检查,减少运行时错误向后兼容。原创 2025-05-30 11:15:01 · 32 阅读 · 0 评论 -
第4.2章 手把手教你读懂ORB-SLAM3 位姿优化函数PoseOptimization,以及如何添加GPS或轮速等观测进行优化
本文介绍了ORB-SLAM3系统中位姿优化函数PoseOptimization的实现原理与方法。该函数通过3D-2D投影关系建立最小二乘问题,优化当前帧的相机位姿。文章详细解析了优化器的构建步骤:首先建立稀疏优化器和Levenberg算法;然后添加当前帧位姿作为顶点;接着构建单目/双目重投影误差边;最后通过4次迭代优化(每次10次迭代)更新位姿。优化过程中采用卡方检验剔除异常值,优化结果包含内点数量、内外点标记和更新后的位姿。该方法为ORB-SLAM3融合GPS等传感器提供了优化基础。原创 2025-05-29 15:42:33 · 345 阅读 · 0 评论 -
第4.1章 视觉SLAM开源框架ORB-SLAM3中C++知识详细总结
ORB-SLAM3是由西班牙萨拉戈萨大学开发的一款实时视觉SLAM库,作为ORB-SLAM系列的重要迭代版本,它凭借自身的技术优势在SLAM领域占据了重要地位。ORB-SLAM3是首个能够同时支持视觉、视觉惯性以及多地图SLAM的实时库,对单目、双目和RGB - D相机均提供支持,且适配针孔和鱼眼镜头模型。在性能方面,它在各种传感器配置下都展现出与当下文献中最优秀系统相媲美的鲁棒性,并且在准确性上有显著提升。原创 2025-05-29 14:56:01 · 136 阅读 · 0 评论 -
第3.6章 从入门到精通:OpenCV库在机器人SLAM中的全面解析
OpenCV,即 Open Source Computer Vision Library,是一个开源的计算机视觉库。它由一系列 C 函数和少量 C++ 类构成,提供了 Python、Ruby、MATLAB 等语言的接口,实现了图像处理和计算机视觉方面的众多通用算法。OpenCV 拥有超过 2500 个优化算法,涵盖了从基本的图像滤波、边缘检测,到复杂的特征提取、目标识别、立体视觉等各个领域。凭借其开源特性,全球开发者能够自由使用、修改和分享代码,极大地推动了计算机视觉技术的发展。原创 2025-03-20 16:51:35 · 78 阅读 · 0 评论 -
第3.5章 一文带你精通机器人SLAM中的Ceres库
在机器人 SLAM(Simultaneous Localization and Mapping,即时定位与地图构建)领域,Ceres 库是一个强大且广泛应用的工具,它主要用于解决非线性最小二乘问题。从数学原理上讲,许多 SLAM 问题都可以建模为最小化一个误差函数的平方和,这正是非线性最小二乘问题的典型形式。原创 2025-03-03 16:16:47 · 222 阅读 · 0 评论 -
第3.4章 解锁机器人SLAM中g2o库的无限可能
自定义边同样是满足复杂应用需求的重要手段。自定义边时,需要明确边所连接的顶点类型以及边所表示的误差项的计算方式。假设我们要定义一条边,用于约束两个上述自定义顶点之间的相对位姿和传感器偏移量关系。我们可以这样定义边类:public:// 计算误差// 计算雅可比矩阵// 读盘和存盘函数,这里暂不实现。原创 2025-03-03 14:35:23 · 108 阅读 · 0 评论 -
PCL 库 pcl::transformPointCloud概述及在机器人SLAM中的代码实例
在点云处理领域,PCL(Point Cloud Library)库是一个强大且广泛使用的工具。其中,函数扮演着重要角色,它为点云数据的坐标变换提供了便捷的实现方式。下面将详细介绍该函数的各项信息、使用方法以及在机器人SLAM中的应用。这两个重载函数的主要区别在于传入的变换矩阵类型不同,一个是类型,另一个是类型,但功能都是将输入点云cloud_in按照给定的变换矩阵进行变换,并将结果存储在cloud_out中。使用包含必要的头文件。定义输入点云、输出点云和变换矩阵。调用函数进行点云变换。原创 2025-02-24 14:36:31 · 175 阅读 · 0 评论 -
第3.3章 一文带你入门PCL点云库及在机器人SLAM中的代码实战
PCL 库,即点云库(Point Cloud Library),是一个专门用于处理三维点云数据的开源 C++ 库。它由一系列高度优化的算法和数据结构组成,旨在提供高效、便捷的点云处理解决方案。PCL 库涵盖了点云数据处理的各个方面,包括滤波、特征提取、分割、配准、模型拟合以及可视化等功能。其强大之处在于,它能够帮助我们快速处理和分析激光雷达、深度相机等传感器获取的点云数据,为机器人的定位、导航和环境感知提供有力支持。在机器人领域,PCL 库占据着举足轻重的地位。原创 2025-02-24 10:48:32 · 94 阅读 · 0 评论 -
第3.2章 一文带你吃透Eigen库:从入门到在机器人SLAM中的进阶应用
Eigen 库是一个开源的 C++ 模板库,专注于线性代数运算 ,涵盖矩阵、向量操作以及数值求解算法等领域。它具备高效、灵活和易用的特性,在科学计算、工程、机器学习、计算机图形学等众多领域广泛应用。Eigen 库的核心优势在于采用模板元编程设计,让众多运算在编译阶段就能完成,极大提升了代码的运行效率。它支持多种数据类型,包括常见的浮点型(如 float、double)和定点数类型,还能自动处理对称矩阵、稀疏矩阵等特殊结构。原创 2025-02-24 10:41:47 · 432 阅读 · 0 评论 -
第3.5.1章 Ceres库最全总结及在机器人SLAM方面的项目应用实例
Ceres库是一个开源的C++库,主要用于解决非线性最小二乘问题。它提供了一种灵活且高效的方法来优化多维函数,在机器视觉、机器人技术、数据分析等领域有广泛的应用。例如,在机器视觉中可用于相机标定、图像配准、三维重建等;在机器人技术中可用于机器人定位、路径规划、SLAM等;在数据分析中可用于拟合曲线、回归分析、数据降维等。原创 2025-01-16 21:38:52 · 360 阅读 · 0 评论 -
第3.1章 985硕从业5年分享:机器人ROS从入门到代码实战
ROS 作为机器人开发领域的核心技术,为机器人赋予了强大的智能和灵活的交互能力,在众多领域发挥着不可替代的作用。从智能家居的贴心服务到工业自动化的高效生产,再到无人驾驶的出行变革,ROS 的应用正不断拓展,为我们的生活和工作带来了极大的便利和创新。展望未来,随着人工智能、传感器技术、计算能力的不断发展,ROS 有望迎来更加辉煌的篇章。在性能优化方面,将不断提升系统的运行效率和响应速度,以满足机器人在高速、高精度任务中的需求;原创 2025-02-10 15:13:34 · 308 阅读 · 0 评论 -
第3.0章 机器人SLAM第三方库:ROS、Eigen、PCL、g2o、Creres、OpenCV史上最全总结介绍
ROS 为机器人 SLAM 提供了一个高效的软件框架,实现了系统的集成与通信;Eigen 凭借其强大的线性代数运算能力,为姿态估计和坐标变换提供了数学基础;PCL 专注于点云处理,助力机器人感知周围环境并构建地图;g2o 和 Ceres 则分别从图优化和非线性优化的角度,提高了 SLAM 系统的精度和稳定性;OpenCV 在视觉 SLAM 中发挥着关键作用,实现了图像的处理和分析。这些技术相互协作,共同推动了机器人 SLAM 技术的发展。原创 2025-01-22 09:18:04 · 484 阅读 · 0 评论 -
第2.10章 解锁C++11新特性:从基础特性到机器人SLAM实战应用
C++11 的一系列创新特性,为机器人 SLAM 领域带来了前所未有的变革与发展机遇。从优化数据处理与存储,到提升算法性能,再到增强代码的可读性与可维护性,这些特性已成为推动 SLAM 技术进步的关键力量。在实际项目中,如动态 - ORB - SLAM2 和基于 C++11 的导航系统,C++11 特性的应用显著提升了系统的性能和可靠性,充分展现了其在机器人 SLAM 领域的巨大潜力。展望未来,随着 C++ 语言的持续演进,新的特性和功能将不断涌现,有望为机器人 SLAM 带来更多的创新与突破。原创 2025-01-22 08:59:25 · 199 阅读 · 0 评论 -
第2.9章 机器人及自动驾驶中C++标准库algorithm算法的“超能力”
算法库无疑是机器人与自动驾驶领域的中流砥柱,为复杂系统的构建注入强大动力。从精准的查找、有序的排序,到灵活的遍历与修改,每一个算法方法都在实际应用中发挥关键作用,助力机器人灵活避障、自动驾驶汽车智能决策,让科幻场景逐步落地为现实。对于开发者而言,深入研习 库是开启智能世界大门的必经之路。持续探索新算法、优化现有算法应用,方能在激烈的科技竞争中脱颖而出。展望未来,随着人工智能、物联网技术蓬勃发展,算法库将持续进化。在机器人领域,群体协作算法有望优化,实现多机器人高效协同作业;原创 2025-01-22 08:48:37 · 76 阅读 · 0 评论 -
第2.8章 C++标准库:从入门到精通的实用指南,在机器人项目中是如何被广泛引用的?
C++ 标准库是 C++ 语言的重要组成部分,是一组由 C++ 标准委员会制定并不断维护更新的类库和函数集合 ,其使用核心语言写成。它犹如一个精心打造的 “工具百宝箱”,为开发者提供了各种实用的工具,涵盖了输入输出、字符串处理、容器、算法、内存管理等多个领域。C++ 标准库具有几个显著的特点。它具有类型安全性,在编译阶段就能检测出许多类型不匹配的错误,大大降低了运行时错误的发生概率。标准库经过了高度优化,具备高效的执行效率,能满足对性能要求极高的场景。原创 2025-01-21 17:09:03 · 267 阅读 · 0 评论 -
第2.7章 C++模板:从入门到精通的最全指南,附机器人项目代码实例
模板是 C++ 中泛型编程的基础,它允许我们编写与类型无关的代码。简单来说,模板就像是一个通用的模具,我们可以通过它创建出针对不同数据类型的具体函数或类。在传统的编程中,当我们需要实现一个功能,如比较两个数的大小,针对不同的数据类型(如 int、float、double 等),可能需要编写多个类似的函数。但有了模板,我们只需编写一次代码,就能让编译器根据实际使用的数据类型来生成相应的函数或类,大大提高了代码的复用性和可维护性。例如,下面是一个简单的函数模板,用于比较两个值的大小:a : b;原创 2025-01-21 17:01:44 · 144 阅读 · 0 评论 -
第2.6章 一文带你吃透C++类Class,以及在机器人自动驾驶中的应用
在 C++ 中,使用class关键字来定义一个类。类的定义包括成员变量和成员函数,它们共同构成了类的基本结构。在机器人和自动驾驶领域,C++ 类的身影无处不在。以机器人为例,机器人的控制系统可被设计为一个类,其中成员变量用于记录机器人的当前状态,如位置、速度、电量等,成员函数则负责实现各种控制操作,如移动、转向、抓取物体等。通过类的封装,将机器人的状态和行为紧密结合,提高了代码的可维护性和可扩展性。在自动驾驶汽车中,传感器数据的处理至关重要。原创 2025-01-21 16:54:00 · 535 阅读 · 0 评论 -
第2.5章 C++函数从入门到进阶:深度剖析与实战指南
在 C++ 的世界里,函数就像是一个个具备特定功能的 “小机器”,而函数的定义则是打造这台 “小机器” 的详细蓝图。函数定义主要由以下几个关键部分组成:返回值类型,它决定了函数执行完毕后会给调用者返回什么样的数据;函数名,如同人的名字一样,方便我们在程序中调用这个函数;参数列表,这里存放着函数运行时所需的各种输入数据;还有函数体,这是函数的核心部分,里面包含了实现具体功能的一系列代码。例如,下面这个简单的函数定义:在这个例子中,int是返回值类型,表示函数会返回一个整数;add是函数名;原创 2025-01-21 16:48:31 · 87 阅读 · 0 评论 -
第2.4章 C++运算符最全总结:从基础到机器人自动驾驶的核心密码
C++ 运算符种类繁多,功能各异,它们是构建 C++ 程序的基本要素。算术运算符用于数值计算,为程序提供了基本的数学运算能力;关系运算符和逻辑运算符则在条件判断和逻辑控制中发挥关键作用,帮助程序根据不同的条件执行不同的操作;赋值运算符负责数据的存储和传递,确保变量能够正确地保存和更新数据;自增自减运算符则为计数操作提供了简洁高效的方式;位运算符在处理二进制数据时展现出强大的功能,能够实现对数据的底层操作。了解并熟练掌握这些运算符的特点和用法,是编写高效、准确的 C++ 程序的基础。原创 2025-01-21 16:37:53 · 85 阅读 · 0 评论 -
第2.3章 C++ 前置修饰符大揭秘及在机器人自动驾驶应用实例
通过对 C++ 前置修饰符的全面探索,我们领略到了它们在机器人及自动驾驶编程领域的强大魔力。从基础的类型限定,到进阶的功能拓展,再到函数相关的优化与多态支持,乃至 C++11 带来的新时代特性,每一类修饰符都为代码注入了独特的活力。在机器人运动控制的精准调度、自动驾驶路径规划的实时决策等关键场景中,前置修饰符如同幕后英雄,默默提升着程序性能、保障着运行稳定。原创 2025-01-20 20:43:03 · 489 阅读 · 0 评论 -
第10章 PCL点云库中pcl/segmentation/模块详细总结
pcl/segmentation/模块主要用于点云数据的分割任务,即将点云数据按照一定的规则和算法划分为不同的区域或部分。通过该模块,可以实现对平面、圆柱体、球体等几何模型的拟合和分割,以及基于聚类算法的点云区域提取等功能。在机器人感知、自动驾驶、三维重建等领域有着广泛的应用。:设置要拟合的模型类型,如平面、圆柱等。:设置用于估计模型参数的方法,如随机采样一致性(RANSAC)。:设置点到模型的距离阈值,用于判断点是否属于模型内点。segment:执行分割操作,返回模型内点的索引和模型系数。原创 2025-01-16 09:12:52 · 68 阅读 · 0 评论 -
第3.1 章 ROS常用头文件分类总结
通过以上分类总结和代码实例,可以更好地理解和使用不同类型的 ROS 头文件,从而进行各种 ROS 应用的开发。原创 2025-01-14 09:21:17 · 310 阅读 · 0 评论 -
第2.2章 C++ 关键字超全总结,自动驾驶定位算法必备!
至此,我们一同游历了 C++ 关键字的奇妙天地,领略了它们在自动驾驶定位算法里从基础数据搭建、存储精细管理、流程精准把控,到修饰安全加固、特殊场景应对等全方位的卓越本领。这些关键字相互协作,为自动驾驶的精准定位、安全行驶夯实根基。对于广大自动驾驶从业者、C++ 爱好者而言,C++ 关键字是值得反复钻研的 “富矿”。深入理解并巧妙运用它们,能让代码质量、算法性能实现质的飞跃。原创 2025-01-06 17:26:16 · 465 阅读 · 0 评论 -
第2.1章 C++ 变量类型大揭秘:自动驾驶算法开发者必备知识
在自动驾驶复杂的场景里,仅仅依靠基础数据类型和数组还远远不够,结构体就像是一位神奇的 “数据裁缝”,它允许我们将不同类型的数据成员巧妙地组合在一起,形成一个全新的自定义数据类型,以精准适配各种复杂的需求。举个例子,为了全面描述车辆的实时状态,我们可以定义一个结构体:// 车辆当前速度,单位:m/s// 车辆在三维空间中的位置坐标,数组存储 x、y、z// 车辆行驶方向,单位:弧度// 是否正在刹车int gear;// 当前挡位。原创 2025-01-06 17:24:13 · 277 阅读 · 0 评论 -
第2.0章 机器人及自动驾驶:C++ 如何精准“掌舵
再看复杂的路况识别,摄像头源源不断传回高清图像帧,C++ 凭借其快速的图像处理能力,迅速识别出道路标识、车辆、行人的轮廓与位置,让自动驾驶系统提前规划避让路线,避免碰撞事故发生,而 Python 在同等数据量和处理要求下,执行速度往往慢上数倍,难以满足实时性严苛的自动驾驶场景。C++ 的类继承与多态机制,让不同层级、不同功能的模块可以灵活扩展,新的传感器接入时,只需在相应类中添加少量代码,就能无缝融入现有系统,这种架构上的清晰性与扩展性,极大降低了开发成本,加速了自动驾驶定位技术的迭代升级。原创 2025-01-06 16:45:47 · 688 阅读 · 0 评论 -
第1.5章 机器人及自动驾驶必备:CMakeLists 入门超详细总结
CMake 自带了一系列预定义变量,它们如同隐藏的宝藏,为项目构建提供诸多便利。比如CMAKE_SOURCE_DIR,它始终指向项目的根源目录,无论项目结构多么复杂,只要想引用根目录下的关键文件,如全局配置文件、通用工具代码等,都能通过它精准定位。在一个大型机器人项目中,不同模块的 CMakeLists.txt 分散在各个子目录,若某个子模块需要访问项目根目录下的共享数据文件,使用{CMAKE_SOURCE_DIR}/data/shared_data.csv就能轻松找到,确保数据的统一使用。原创 2025-01-04 11:49:36 · 129 阅读 · 0 评论 -
第1.4章 机器人及自动驾驶开发必备:代码管理Vim及日志bug查看神器Cat与Tail命令全解析
咱们一同领略了 Vim、Cat 和 Tail 等编辑器命令在机器人及自动驾驶领域的独特魅力,从代码编写的高效操作,到日志管理的精准把控,再到文本查看的便捷灵活,它们全方位助力技术开发与系统运维。Vim 以多样的编辑技巧让代码雕琢得心应手,Cat 使文本内容尽在掌握,Tail 则实时守护系统运行动态,各显神通。不过呢,这只是命令行工具的冰山一角,还有诸如 Grep 精准搜索、Sed 流式编辑等诸多强大命令等待大家挖掘。原创 2025-01-04 11:12:52 · 108 阅读 · 0 评论 -
第1.3章 机器人及自动驾驶开发必备:Git代码管理常用命令大揭秘
在机器人与自动驾驶波澜壮阔的创新浪潮中,Git 无疑是开发者乘风破浪的得力帆桨。它让代码管理从混乱走向有序,从繁琐迈向高效,无论是个人开发者雕琢智能机器人的精巧算法,还是大型团队攻坚自动驾驶的复杂系统,Git 都稳稳承载着代码的迭代与协作重任。掌握好 Git 的各类命令,犹如手握开启智慧之门的钥匙,能在遇到代码难题、团队协作困境时轻松化解。原创 2025-01-04 10:56:11 · 126 阅读 · 0 评论 -
第1.2章 机器人及自动驾驶必备基础:VSCode教程 及 AI代码插件推荐
如何高效编写代码?怎样快速调试程序?**别担心,今天就给大家带来一款超强大的编程神器 ——VSCode,以及能让编程之路 “一马平川” 的实用插件推荐,无论你是新手小白还是资深大神,都能从中受益!原创 2025-01-03 21:59:27 · 1186 阅读 · 0 评论 -
第1.1章 机器人及自动驾驶SLAM必备:Ubuntu及常用Bash命令实战总结
在机器人与自动驾驶的奇妙世界里,Ubuntu 系统就像是一位幕后英雄,为各类智能设备提供了稳定且强大的运行支撑。原创 2025-01-03 21:10:07 · 715 阅读 · 0 评论 -
第1章 机器人及自动驾驶SLAM定位学习路线及资料推荐
机器人及自动驾驶SLAM定位学习路线及资料推荐原创 2025-01-15 09:15:36 · 232 阅读 · 0 评论 -
第0章 机器人及自动驾驶SLAM定位方法全解析及入门进阶学习建议
究竟什么是机器人及自动驾驶中的定位概念呢?想要深入探索这一领域,又需要构建怎样的知识体系?别急,本文将为您抽丝剥茧,详细解读,并贴心奉上实用的学习建议,助您开启这场充满魅力的科技求知之旅。原创 2025-01-04 08:25:37 · 1580 阅读 · 0 评论 -
985硕毕业5年谈:家里太穷,读博还是工作?
如今工作几年下来,经济上也算安稳,也成家买房买车了(经济上比我硕士期间纠结的好很多,毕竟未来怎么样真的想不到,很多担心的点其实是白焦虑了)。就拿我自己来说,曾经在研三的时候也面临着读博与否的挣扎。可冷静下来分析,自己读研时的方向不太理想,也没能发表高质量的论文,数学和英语水平也只是一般,而且读博也难以找到优秀的导师,再加上来自农村家庭,经济上无法给予太多支持,种种因素综合考虑后,我最终选择了硕士毕业。再者,如果有读博的打算,要考虑能去什么样的学校,跟随什么样的导师,毕竟导师在学术道路上的引领作用至关重要。原创 2025-01-04 10:27:16 · 519 阅读 · 0 评论