Tensorflow简单的线性回归模型

import tensorflow as tf
import  numpy as np
x_data=np.random.rand(5)
y_data=x_data*0.3+0.8

#构建一个线性模型
b=tf.Variable(0.)
k=tf.Variable(0.)
y=k*x_data+b

#定义二次代价函数
loss=tf.reduce_mean(tf.square(y_data-y))
#定义一个梯度下降法来进行训练的优化器
optimizer=tf.train.GradientDescentOptimizer(0.01)
train=optimizer.minimize(loss)

init=tf.global_variables_initializer()

with tf.Session() as sess:
    sess.run(init)
    for ii in range(10000):
        sess.run(train)
        if ii%1000==0 :
            print(ii,sess.run([loss,k,b]))



训练结果:

 

 


QQ技术交流群:386476712

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值