线性代数-基础

本文探讨了线性空间的概念及基的选择对于简化问题的重要性,深入解析了线性映射与矩阵之间的联系,并从代数、几何及统计等多个角度阐释了线性回归的基本原理。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

线性空间与基

线性映射与矩阵

  • 什么是矩阵
  • 矩阵作为线性映射的代数表达式
  • 线性方程的几何意义(拉伸, 反转, 旋转)

线性回归(多种角度求解)

  • 矩阵模型
  • 线性回归作为方程求解问题(代数)
  • 线性回归作为几何逼近问题(几何)
  • 最小二乘(统计)
  • 极大似然估计(统计)

线性代数的理解

  • A * x 的几何意义
  • 矩阵乘法在计算中的优势

 

 

线性空间与基

 

1. 线性空间

 

2. 基

 

3. 坐标空间(important)

 

 

小结 :

1. 线性空间是一种结构 -> 向量集合 + 结构(加法以及乘法运算结构)

2. 任何一个向量可以被不同的基表示, 线性代数的核心问题是如何选择一组好的基, 来简化问题

3. 基和坐标系是等价的, 基的方向 = 坐标系的方向

 

 

 

线性映射与矩阵

1. 线性映射

 

说明 :

(1) 和的映射 = 映射的和

(2) 积的映射 = 映射的积

 

小结 :

(1) 线性映射指的就是两个线性空间的关系

(2) 线性变换 自身到自身的映射

 

2. 线性映射的矩阵描述

 

 

 

小结 :

(1) 矩阵可以用来描述线性映射(线性变换), 矩阵是作为线性映射的代数表达式

 

3. 几何变换 : 拉伸, 反转, 旋转

 

 

 

线性回归(多种角度求解)

 

1. 矩阵模型

 

X 代表特征空间向量

β 代表特征系数向量

Y 代表 label/回归值

 

2. 线性回归作为方程求解问题(代数)

 

3. 线性回归作为几何逼近问题(几何)?

还是有疑问?

 

4. 最小二乘法(求导==0)?

why?

 

5. 极大似然估计?

 

 

线性代数的理解

1. A * x的几何意义

A 代表 特征值矩阵

x 代表 特征系数矩阵

 

A*x的几何意义 : 列向量的线性组合

 

 

2. 矩阵乘法的计算优势

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值