3-机器学习进阶-模型的攻击和防御

探讨了如何通过梯度计算优化模型对细微变化的响应,强调了主动防御与被动防御的区别,以及FGSM攻击和白盒/黑盒攻击的原理。文章还提到了利用模型漏洞的防御手段和数据模拟对抗的复杂性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在这里插入图片描述
假如细微的变化,人能识别出来,但是机器得出完全不同的东西了
在这里插入图片描述
真实的越远越好,非真实的越近越好,同时限制下输入偏差不能太大,模型固定去调整输入,把输入当做参数去训练
在这里插入图片描述
两中方法计算限制距离,
在这里插入图片描述
限制,第二种方式最好,同样可以进行梯度计算,每次迭代更新的时候加个判断就好,拉到满足条件,离目标点最近
在这里插入图片描述
画圆即可,超出了拉进来
在这里插入图片描述
维度是非常多的,某个维度的变化可能导致突变,梯度的方向就是找到这个突变的方向,用多维度去看问题
在这里插入图片描述
FGSM在意方向,梯度设置很大,一次性得到结果
在这里插入图片描述
攻击的分类,知道模型参数,白箱攻击
在这里插入图片描述
黑箱攻击,不知道模型参数和架构,只知道训练数据,训练出来一个新的一样可以攻击
在这里插入图片描述
假如训练数据不知道,可以模拟一大堆数据造一批训练资料,一样可以攻击
在这里插入图片描述
模型的防御,被动防御和主动防御
在这里插入图片描述
被动防御,增加过滤层,让输入更加平滑,相当于只有某个方向的变化能攻击,把这个方向的变化平滑了
在这里插入图片描述
主动防御,训练阶段就开始找这些漏洞参数,并重新训练模型,训练好的模型又会产生新的漏洞,反复迭代更新,但是只要找到漏洞数据的方法被泄露出去,一样可以攻击,或者有一个开源攻击所有找漏洞的方式一样可以切攻击,尚待解决的问题

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值