pandas如何往mysql追加数据

这段代码演示了如何使用pandas的`to_sql`函数将DataFrame对象存储到SQL数据库中,`index=False`参数确保索引不会被写入,`if_exists='append'`表示如果表已存在则追加数据。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

#这样的操作之后是生成了一个新表,index参数表示不把索引写到数据库。

df.to_sql('table', engine, index=False, if_exists='append')

### 如何使用 Pandas 创建 MySQL 数据表 为了通过 `pandas` 在 MySQL 中创建数据表,通常会借助 SQLAlchemy 来建立数据库连接。以下是实现这一目标的具体方式: #### 使用 SQLAlchemy 和 Pandas 的基本流程 可以通过调用 `DataFrame.to_sql()` 方法将 Pandas 的 DataFrame 写入到 MySQL 表中。如果指定的目标表不存在,则该方法可以自动创建一个新的表结构[^1]。 #### 示例代码 以下是一个完整的 Python 脚本示例,展示如何使用 Pandas数据写入 MySQL 并创建新的表格: ```python import pandas as pd from sqlalchemy import create_engine # 创建一个简单的 DataFrame data = { 'id': [1, 2, 3], 'name': ['Alice', 'Bob', 'Charlie'], 'age': [25, 30, 35] } df = pd.DataFrame(data) # 配置数据库连接字符串 (此处以 MySQL+MySQL Connector为例) db_url = "mysql+pymysql://username:password@localhost/db_name" engine = create_engine(db_url) # 将 DataFrame 写入 MySQL 数据库中的新表 table_name = 'my_new_table' df.to_sql(name=table_name, con=engine, index=False, if_exists='replace') print(f"Table '{table_name}' has been created successfully.") ``` 上述脚本的关键部分解释如下: - **create_engine**: 这里我们定义了一个用于连接 MySQL 数据库的引擎实例。URL 参数指定了使用的驱动程序 (`mysql+pymysql`)、用户名、密码以及目标数据库名称。 - **to_sql**: 此函数负责把当前的 DataFrame 对象存储至 SQL 数据库内的某张表之中。参数说明: - `if_exists`: 控制当目标表已经存在时的行为选项;可选值有 `'fail'`, `'replace'`, 或者 `'append'`。 需要注意的是,在实际部署前应替换掉占位符 `"username"`、`"password"` 和 `"db_name"` 成真实的登录凭证与数据库名[^2]。 #### 关于追加单列的情况 对于仅向现有 MySQL 表添加一列的需求,虽然可以直接通过执行原始 SQL 查询语句完成(即采用 cursor.execute()),但也可以先构建包含新增字段的新 DataFrame ,再利用 `to_sql(if_exists="append")` 实现[^3] 。不过这种方法的前提条件是原表和其他待插入记录之间需保持一致性的 schema 设计。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值