control confounding in study

本文介绍了判断两个现象间是否存在因果关系的三个步骤:首先确认两者之间的关联性;其次验证其中一个现象是否能够预测另一个现象的发生;最后排除其他可能影响结果的混淆变量。文章还详细解释了如何通过实验设计来排除混淆变量。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

如何判断两个现象的因果关系

著作权归作者所有。
商业转载请联系作者获得授权,非商业转载请注明出处。
作者:程毅南
链接:https://www.zhihu.com/question/20532054/answer/15399462
来源:知乎
简化版:1. 两件事(A与B)相互关联(Association)2. A的发生可以预测B的发生(Prediction)3. 排除其他可能的混淆变量(Excluding Confounding Variable)所以可以看出,判断因果其实是个逻辑过程。———————————————————————————————————详细版1. 证明因果,首先要证明两个事件有关联(Association)。这种关联一般来说是粗浅、朴实、简单的一种现象,比如常常有人说“穷人的孩子早当家”、“有钱就是爷”、“量小非君子”、“帅哥往往很有领导才能”等等。关联现象不一定意味着因果关系,但却是一个很好的起点。如果A与B两个事件有关联,往往会吸引研究者的注意,去发掘其中的可能存在的因果关系。证明关联的方法有很多种,比如证明统计学上的相关(Correlation),通过数据分析可以看出A和B是否存在正相关和负相关。不存在关联就不存在因果。(不过统计数据有时候有局限性,因为样本过大后干扰因素变多,不过这么专业的问题不在这儿探讨了,有时间大家可以查查关于吸烟与肺癌的关系的辩论)2. 证明关联后,一般会产生一个假设(Hypothesis),该假设会对阐述A和B的先后关系的推测(Direction of Causation)。如果假设A导致B,那么需要证明A在B前,A的出现要能预测B的出现(所以有时间上的顺序)。这是单向的预测。反过来的另一个方向需要再单独证明。3. 之后要去除掉其他可能的混淆变量(confounding variable)。所谓混淆变量,就是发生在A以外的其他事情导致了B。因为我们想要证明的是 A导致了B,可如果其他的东西导致了B,这个因果关系就不成立了。比如,冰淇淋销量和溺水率是正相关,但事实上这两个都是由“气温”这个因素共同导致的,气温高使冰淇淋销量升高,同时增加了游泳的人数和相应的溺水率。常见的去掉混淆变量的方发是:实验组/对照组 设计 (Control Group design,也被称为Experimental Manipulation)实验组,这一组样本中做处理A(treatment)。对照组,不做处理A,放置。然后观察两组现象的差别。要证明因果,就是需要实验组出现现象B,而对照组不出现B。这样在相同的实验条件下,实验组因为做了A而出现现象B,对照组没有做A而没有出现B,就能证明,A的加入导致B,而没A不能导致B。例如,铁加稀硫酸产生氢气。实验组是把铁放入稀硫酸,对照组是放置稀硫酸。如果实验组出现氢气,而对照组没出现,那么证明把铁加入稀硫酸可以产生氢气,而不加铁不会自然产生氢气。再如,上面举到的冰淇淋的例子,假设某年夏天冰淇淋销量没有上涨,而溺水率还是那么高,那么就说明冰淇淋不是造成溺水率升高的因素。多说一句,实验组/对照组的设计是整套方法论中非常关键的一环,往往决定了整个实验的成败。样本一致性。一般来说,实验组和对照组要完全一样,才能证明是处理(Treatment)造成了结果的差异,而不是样本本身的差异造成的结果的差异。这个在自然科学的实验中相对简单(只要保证两组样本质量、浓度、所用物质、堆放方式等等物理条件相同就行了),但在社会科学的实验中,因为涉及到人这个复杂的东西,所以会有一些特别的设计,来保证样本一致性,这里介绍两个。随机抽样/随机分组 设计这个设计一般出现在涉及人的社会实验。随机抽样和随机分组是为了保证实验组和对照组两个样本没有显著差别,以排除由两组人的不同导致的现象差异。因为人是随机分配的,所以可以假设两个组的人员构成、各种心理特点整体上是相同的。例如,探究粉红色对人情绪的影响。如果实验组都是男人,而对照组都是女人,实验结果的差异就可能是由男女差异带来的,而不是颜色带来的差异。实验前测量 设计这个设计是为了在随机分组不可能的情况下,验证两组样本整体相同的办法。简言之,就是在实验前对两组人做一个测试,整体平均数和标准差一样的话,就证明两组人一样。当然,实验后也要测量,证明两组不一样了。最好用类似或者相同的方式测量,以避免由于测量工具不同造成的系统误差。例如,实验前量水温,实验后量水温。风险,设计到人的实验,可能他会在实验中学习,比如先做了一遍习题,再做一遍同样的成绩会升高。所以有的时候测量也需要讲究一定技术和方法,有时候也需要做一些善意的欺骗=_=排除尽可能多的第三方因素后,我们就可以比较有信心地说,是我们的处理(treatment)A导致了B,而不是什么其他的东西导致了B。另一种说法是我们的manipulation(操纵)是有效的。总结:如果这个实验(通常是一系列的各种实验和研究过程)证明了关联和先后,并排除了可能的第三方因素,那么就可以说这个因果关系在某个确定的条件下(你的实验条件)是可信的,成立的。

深入阅读
How to control confounding effects by statistical analysis
Control of Confounding in Study Design

• Utilize SPSS 26.0 statistical software to analyze the quantitative data collected from all study participants. Begin by performing comprehensive descriptive statistics to effectively summarize the central tendency and variability across the key datasets. Specifically, calculate the mean, standard deviation, maximum value, and minimum value for the physical health knowledge scores, physical fitness test results, and satisfaction scores within both the experimental group and the control group, both prior to and following the intervention. This initial step provides a crucial overview of the overall data distribution, aids in identifying any potential outliers or unusual patterns, and establishes a foundational understanding of the dataset characteristics for subsequent analyses. • Subsequently, conduct inferential statistical procedures to rigorously test the study hypotheses and explore potential relationships between variables. Initiate this phase by employing an independent sample t-test. Apply this test to compare the baseline differences in physical health knowledge scores, physical fitness test results, and satisfaction scores between the experimental group and the control group before the intervention commences, using a predetermined significance level of α=0.05. This critical comparison ensures that the two groups are statistically comparable at the outset, confirming the absence of significant pre-existing differences prior to the administration of the intervention. • Proceed next with paired sample t-tests to meticulously examine within-group changes over the intervention period. Conduct these tests separately for the experimental group and the control group, comparing the differences in physical health knowledge scores, physical fitness test results, and satisfaction scores recorded before the intervention with those recorded after the intervention, again applying the α=0.05 significance threshold. This analysis directly assesses the magnitude and statistical significance of changes occurring over time within each group individually, providing insight into the natural progression or any inherent group-specific effects. • Then, implement analysis of covariance (ANCOVA) to account for initial variations between participants and enhance the precision of the between-group comparison after the intervention. For this analysis, incorporate the pre-test (baseline) results as covariates. Analyze the adjusted differences in post-test results for physical health knowledge scores, physical fitness test results, and satisfaction scores between the experimental group and the control group, statistically controlling for these baseline scores. This sophisticated approach effectively eliminates the confounding influence of pre-existing differences among participants, thereby yielding a more accurate and unbiased evaluation of the true intervention effect, with statistical significance assessed at α=0.05. • Finally, execute bivariate correlation analyses to investigate potential linear associations between the measured variables. Analyze the pairwise correlations between physical health knowledge scores, physical fitness test results, and satisfaction scores using Pearson's correlation coefficient (r). This analysis explores the strength and direction of potential relationships and dependencies among these key outcome measures, with the significance of each correlation coefficient rigorously tested at the α=0.05 level. Throughout all inferential analyses (t-tests, ANCOVA, correlation), it is imperative to include thorough checks for underlying statistical assumptions, such as normality of distribution and homogeneity of variances (homoscedasticity), to ensure the validity and robustness of the reported findings.根据以上画一个流程图
08-03
内容概要:本文档详细介绍了一个基于MATLAB实现的跨尺度注意力机制(CSA)结合Transformer编码器的多变量时间序列预测项目。项目旨在精准捕捉多尺度时间序列特征,提升多变量时间序列的预测性能,降低模型计算复杂度与训练时间,增强模型的解释性和可视化能力。通过跨尺度注意力机制,模型可以同时捕获局部细节和全局趋势,显著提升预测精度和泛化能力。文档还探讨了项目面临的挑战,如多尺度特征融合、多变量复杂依赖关系、计算资源瓶颈等问题,并提出了相应的解决方案。此外,项目模型架构包括跨尺度注意力机制模块、Transformer编码器层和输出预测层,文档最后提供了部分MATLAB代码示例。 适合人群:具备一定编程基础,尤其是熟悉MATLAB和深度学习的科研人员、工程师和研究生。 使用场景及目标:①需要处理多变量、多尺度时间序列数据的研究和应用场景,如金融市场分析、气象预测、工业设备监控、交通流量预测等;②希望深入了解跨尺度注意力机制和Transformer编码器在时间序列预测中的应用;③希望通过MATLAB实现高效的多变量时间序列预测模型,提升预测精度和模型解释性。 其他说明:此项目不仅提供了一种新的技术路径来处理复杂的时间序列数据,还推动了多领域多变量时间序列应用的创新。文档中的代码示例和详细的模型描述有助于读者快速理解和复现该项目,促进学术和技术交流。建议读者在实践中结合自己的数据集进行调试和优化,以达到最佳的预测效果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值