Elasticsearch from+size 超过10000结果解决方法

方法一:

如果需要搜索分页,可以通过from size组合来进行。from表示从第几行开始,size表示查询多少条文档。from默认为0,size默认为10, 
如果搜索size大于10000,需要设置index.max_result_window参数 
注意:size的大小不能超过index.max_result_window这个参数的设置,默认为10,000。 

PUT _settings
{
    "index": {
        "max_result_window": "10000000"
    }
}

方式二:

使用 scroll 代替,官方推荐方式。

优缺点:

方式一,当结果足够大的时候,会大大加大内存和CPU的消耗。使用非常方便。

方式二: 当结果足够大的时候, scroll 性能更加。但是不灵活和 scroll_id 难管理问题存在。

个人测试:当 结果足够大的时候 产生 scroll_id 性能也不低。如果只是一页页按照顺序,scroll是极好的,但是如果是无规则的翻页,那也是性能消耗极大的。



<think>我们面对的问题是:在Elasticsearch7.4.2中,当分桶聚合结果超过10000(即桶的数量超过10000)且无法修改配置(即不能调整`search.max_buckets`参数)的情况下,如何实现分区处理。分析:默认情况下,Elasticsearch为了防止过度消耗内存,将聚合返回的桶数限制为10000(通过`search.max_buckets`设置)。如果聚合产生的桶数超过这个限制,就会抛出异常。在不修改集群配置(即不增加`search.max_buckets`值)的情况下,我们需要一种方法来规避这个限制。思路:1.分区处理:将整个数据查询分成多个子查询,每个子查询只处理数据的一个子集,从而确保每个子查询返回的桶数不超过10000。2.使用复合聚合(Composite Aggregation):复合聚合允许我们分页获取聚合结果,它通过一个组合键(多个字段)来构建桶,并支持在多次查询中获取所有桶。方案:使用复合聚合进行分页查询,逐步获取所有桶。复合聚合是专门为处理大量桶而设计的,它不会一次性返回所有结果,而是每次返回一批(可以控制大小,比如10000个桶),然后我们可以通过一个“游标”来获取下一批。步骤:1.构建复合聚合查询,指定多个字段作为复合键(如果只需要一个字段,就只用一个字段)。2.设置每次返回的桶数(size),最大不超过10000(这里我们设置为10000,但注意,如果一次查询就超过10000个桶,我们仍然需要分页,所以size不能超过10000,比如设置成10000)。3.执行第一次查询,不提供游标(after)。4.从第一次查询结果中获取最后一个桶的复合键,作为下一次查询的游标(after)。5.重复执行查询,直到返回的桶数小于size,表示已经取完。注意:复合聚合要求至少有一个字段是支持doc_values的(通常是数值、日期、关键字等类型)。示例:假设我们有一个索引,包含字段"category"(keyword类型)和"value"(数值类型),我们想按"category"分组,并计算每个分组的平均"value"。传统聚合(桶数超过10000会失败):```json{"size":0,"aggs":{"group_by_category": {"terms":{"field": "category","size":10000//这里即使设置成10001,但实际返回也不会超过10000,且无法获取超过10000的部分},"aggs": {"avg_value": {"avg":{ "field":"value" }}}}}} ```使用复合聚合(分页获取):第一次查询:```json{"size":0,"aggs": {"my_buckets": {"composite": {"size":10000,//每次获取10000个桶"sources": [{"category":{"terms": {"field":"category"}}}]},"aggs":{"avg_value":{"avg": {"field": "value"}}}}} }```从响应中,我们会得到一个类似于这样的结构: ```json{"aggregations": {"my_buckets": {"after_key": {"category":"last_category_value" },//最后一个桶的键"buckets":[ ...]//桶的数组,最多10000个}}} ```下一次查询,我们使用上一次的`after_key`作为游标:```json{"size":0,"aggs":{"my_buckets":{"composite":{"size":10000,"sources":[{"category": {"terms":{"field": "category"}}}],"after":{ "category":"last_category_value" }//使用上一次返回的after_key},"aggs": {"avg_value": {"avg":{ "field":"value" }}}}}} ```重复这个过程,直到返回的桶数小于10000(或者为0),则停止。代码实现(伪代码):```pythonafter_key =Noneall_buckets= []while True:query =build_composite_query(after_key,size=10000)response= es.search(index="my_index", body=query)agg =response['aggregations']['my_buckets']buckets= agg['buckets']all_buckets.extend(buckets)#检查是否还有下一页if'after_key'in agg:after_key= agg['after_key']else:break#如果返回的桶数小于size,说明已经到最后一页iflen(buckets) <10000:break```这样,我们就将所有的桶分页获取到了,而且每次查询都不会超过10000个桶的限制。注意事项:1.复合聚合只能用于多个字段(或单个字段)的桶聚合,不支持嵌套多个桶聚合(但可以在复合聚合内部嵌套子聚合)。2.复合聚合的游标查询可能会产生多次网络请求,因此会比一次性获取慢,但这是在不调整集群设置情况下的唯一方法。3.复合聚合要求字段必须是关键字类型(keyword)或数值、日期等支持doc_values的字段,不能是text类型(除非使用其keyword子字段)。总结:通过使用复合聚合的分页特性,我们可以绕过`search.max_buckets`的限制,分批获取聚合结果,从而在不修改集群配置的情况下处理超过10000个桶的聚合查询。引用说明:在Elasticsearch中,复合聚合是处理大量桶的推荐方法[^3]。 §§相关问题 §§1.复合聚合支持哪些类型的字段作为复合键?2.复合聚合分页查询的性能如何优化? 3.除了复合聚合,还有哪些方法可以处理大量桶的聚合?</think>### Elasticsearch 7.4.2 分桶聚合结果超过10000解决方案(不修改配置) 在不修改 Elasticsearch 配置(如调整 `search.max_buckets` 参数)的情况下,可通过以下方法实现分区处理: #### 1. **复合聚合(Composite Aggregation)分页查询** [^3] 这是最推荐的解决方案,专门用于处理大规模桶聚合: ```json GET /your_index/_search { "size": 0, "aggs": { "partitioned_results": { "composite": { "size": 10000, // 每页获取10000个桶 "sources": [ { "field_partition": { "terms": {"field": "your_field"} // 分区字段 } } ] }, "aggs": { "your_metric": { // 嵌套的度量聚合 "avg": {"field": "price"} } } } } } ``` **实现步骤**: 1. 首次查询不指定 `after_key` 2. 从响应中获取 `after_key` 值: ```json "aggregations": { "partitioned_results": { "after_key": { "field_partition": "last_value" }, "buckets": [...] } } ``` 3. 后续查询添加游标参数: ```json "composite": { "size": 10000, "sources": [...], "after": { "field_partition": "last_value" } // 使用前次游标 } ``` 4. 循环查询直到返回空桶 **优点**: - 原生支持分页机制 - 避免内存溢出风险 - 兼容ES 7.4.2版本 #### 2. **时间范围分区(Date Range Partitioning)** 对时间字段进行分段查询: ```json { "aggs": { "time_ranges": { "range": { "field": "timestamp", "ranges": [ { "to": "now-30d/d" }, { "from": "now-30d/d", "to": "now-15d/d" }, { "from": "now-15d/d" } ] }, "aggs": { "sub_agg": { "terms": { "field": "category", "size": 10000 // 每个时间段内桶数不超过限制 } } } } } } ``` #### 3. **脚本分区(Scripted Partitioning)** 使用脚本动态分组: ```json { "aggs": { "partitioned": { "terms": { "script": { "source": """ (doc['your_field'].value.hashCode() & 0xffff) % 10 // 分成10个分区 """, "size": 10000 // 每个分区桶数限制 } } } } } ``` 通过修改模数(如 `% 10`)控制分区数量。 #### 4. **过滤聚合组合(Filtered Aggregation Sets)** 手动分片查询: ```json // 第一段查询 { "query": { "range": { "partition_id": { "gte": 0, "lt": 1000 } } }, "aggs": { "buckets": { "terms": { "field": "your_field", "size": 10000 } } } } // 第二段查询 { "query": { "range": { "partition_id": { "gte": 1000, "lt": 2000 } } }, ... } ``` 需预先设计分区字段 `partition_id`。 > **关键提示**: > 1. 复合聚合是最符合ES设计理念的解决方案[^3] > 2. 避免使用`terms`聚合的`size:10000`直接突破限制(会导致节点OOM) > 3. 分区字段应选择高基数字段保证均匀分布 > 4. 最终结果需在客户端合并处理 ---
评论 7
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值