题目描述
输入一个整数数组,判断该数组是不是某二叉搜索树的后序遍历的结果。如果是则输出True, 否则输出False。假设输入的数组的任意两个数字都互不相同。
例如:输入数组{5,7,6,9,11,10,8},则返回Yes,因为这个整数序列是下图二叉搜索树的后序遍历结果。 8 / \ 6 10 / \ / \ 5 7 9 11 如果输入数组是{7,4,6,5}则由于没有哪个二叉搜索树的后序遍历结果是这个序列,因此返回False
分析:
在后序遍历得到的序列中,最后一个数字是树的根节点的值。数组中前面的数字可以分为两部分:第一部分是左子树节点的值,都比根节点的值小;第二部分是右子树节点的值,都比根节点的值大。
以数组{5, 7, 6, 9, 11, 10, 8}为例,后序遍历结果的以后一个数字8就是根节点的值,在这个数组中,{5, 7, 6}都比8小,是值为8的节点的左子树节点;{9, 11, 10}都比8大,是值为8的节点的右子树节点。
接下来用同样的方法确定与数组每一部分对应的子树结构,这个其实就是一个递归的过程。
再来分析{7, 4, 6, 5},最后一个数字是根节点,因此根节点的值为5。由于第一个数字7大于5,因此7到5之前的所有数字都是值为5的根节点的右子树,该树根节点没有左子树。但是可以发现在右子树中有一个节点值为4,比根节点的值5小,这违背了二叉搜索树的定义。
代码:
def VerifySquenceOfBST(sequence):
if not sequence:
return False
if len(sequence)==1:
return True
result = Ture
root = sequence[-1]
left = []
right = []
for i in range(len(sequence[:-1]):
if sequence[i] < root:
left.append(sequence[i])
else:
right = sequence[i:-1]
break
# 判断left和right中是否存在异常元素
if result and len(left):
for i in left:
if i > left:
return False
result = VerifySquenceOfBST(left) # 递归检查子树结构
if result and len(right):
for i in right:
if i < right:
return False
result = VerifySquenceOfBST(right)
return result
测试:
s = [5,7,6,9,11,10,8]
print(VerifySquenceOfBST(s)) # True
s = [7,4,6,5]
print(VerifySquenceOfBST(s)) # False