图像高斯模糊和均值模糊

模糊原理:

  1. 模糊原理和上几节说的图像掩模矩阵有很多相似的地方,都是拿一个矩阵(3X3, 5X5)等,和原图从左向右从上到下分别进行卷积,将卷积值最后赋值个当前卷积的中心像素。

  2. 那么其最关键的参数,也就在于矩阵的大小和矩阵的值,我们通常称矩阵为卷积核。

  3. 模糊操作的重要原因之一也是为了给图像预处理时降低噪声。


均值模糊:
均值模糊,也称为均值滤波,相当于卷积核的矩阵值全部为1/(卷积SIZE),如下图所示:
在这里插入图片描述
均值模糊API:

在这里插入图片描述

高斯模糊:越靠近卷积核的领域权重越大。
均值模糊:领域权重都为1。
而无论是高斯模糊或者是均值模糊,有一个缺点是他们在模糊的时候并不能很好的保留
边缘信息。因此双边滤波便很好客服了这一缺陷。原理如图:

在这里插入图片描述

#include<opencv2/opencv.hpp>
#include<iostream>
using namespace cv;
using namespace std;
int main() {