由浅入深解析LeetCode406:队列重建问题
问题描述
本题要求我们将打乱顺序的人群重新排列成一个队列,使得每个元素满足特定条件:对于队列中的每个人people[i] = [h_i, k_i]
,其前方正好有k_i
个身高大于或等于h_i
的人。
示例
输入:
people = [[7,0],[4,4],[7,1],[5,0],[6,1],[5,2]]
输出:
[[5,0],[7,0],[5,2],[6,1],[4,4],[7,1]]
暴力解法的困境
直接尝试所有排列组合的时间复杂度为O(n!),显然无法处理大规模数据。我们需要寻找更高效的算法。
贪心算法核心思想
通过观察发现:高个子不会受矮个子插入的影响。因此我们可以:
- 从高到低处理人群:首先将所有人按身高从高到低排序,身高相同的人按k值从小到大排序。这样做的目的是确保在插入时,已经处理的人的身高都大于等于当前处理的人,从而保证插入位置的正确性。
- 按k值确定插入位置:依次处理排序后的每个人,根据其k值将其插入到结果队列的指定位置。由于之前已经按身高降序处理,插入时前面的人的身高必然大于等于当前人,因此k值直接决定了其应插入的位置。
关键洞察
- 高个子先站好位置
- 矮个子插入时,高个子的存在不会影响后续操作
- 每个人插入的位置由其k值直接决定
算法实现详解
步骤一:排序策略
sort(people.begin(), people.end(), [](const vector<int>& a, const vector<int>& b) {
if (a[0] == b[0]) return a[1] < b[1]; // 身高相同时,k小的在前
return a[0] > b[0]; // 身高降序排列
});
排序规则:
- 身高降序排列(高个子优先处理)
- 身高相同时,k值升序排列(保证插入顺序正确)
此处的sort排序用了lambda表达式
示例排序结果:
[[7,0], [7,1], [6,1], [5,0], [5,2], [4,4]]
步骤二:插入过程
vector<vector<int>> queue;
for (const auto& p : people) {
int pos = p[1];
queue.insert(queue.begin() + pos, p);
}
操作逻辑:
- 创建空队列
- 遍历排序后数组
- 将当前元素插入到
queue[pos]
位置
插入过程示例:
当前处理元素 | 插入位置 | 队列状态演变 |
---|---|---|
[7,0] | 0 | [[7,0]] |
[7,1] | 1 | [[7,0], [7,1]] |
[6,1] | 1 | [[7,0], [6,1], [7,1]] |
[5,0] | 0 | [[5,0], [7,0], [6,1], [7,1]] |
[5,2] | 2 | [[5,0], [7,0], [5,2], [6,1], [7,1]] |
[4,4] | 4 | [[5,0], [7,0], [5,2], [6,1], [4,4], [7,1]] |
关键问题解析
为什么直接使用整数索引会报错?
// 错误写法
queue.insert(pos, p); // 类型不匹配!
// 正确写法
queue.insert(queue.begin() + pos, p);
根本原因:
vector::insert()
要求第一个参数是迭代器类型- 整数
pos
无法隐式转换为迭代器
迭代器原理:
queue.begin()
返回指向第一个元素的迭代器+ pos
操作相当于指针偏移- 示例:当
pos=2
时,begin()+2
指向第三个元素前的位置
复杂度分析
- 时间复杂度:O(n²)
- 排序:O(n log n)
- 插入操作:每次插入平均O(n)时间
- 空间复杂度:O(n)
完整代码实现
#include <vector>
#include <algorithm>
using namespace std;
class Solution {
public:
vector<vector<int>> reconstructQueue(vector<vector<int>>& people) {
// 第一步:特殊排序
sort(people.begin(), people.end(), [](const vector<int>& a, const vector<int>& b) {
if (a[0] == b[0]) return a[1] < b[1];
return a[0] > b[0];
});
// 第二步:按k值插入
vector<vector<int>> queue;
for (const auto& p : people) {
auto pos = queue.begin() + p[1];
queue.insert(pos, p);
}
return queue;
}
};
贪心算法正确性证明
- 身高降序保证:后插入的矮个子不会影响已存在高个子的k值
- k值准确性:每个元素插入时,队列中已有元素的身高都≥当前元素
- 插入位置计算:k值直接对应需要的前置高个子数量
同类问题扩展
该算法模式可应用于以下类型问题:
- 需要满足位置约束的重建问题
- 多维条件排序问题
- 贪心选择策略适用的场景
总结
本题通过巧妙的排序策略和插入顺序选择,将原本复杂的问题转化为可高效解决的贪心算法问题。要进一步提升写贪心算法的能力,需要理解其中的两个关键点:
- 处理顺序决定算法可行性
- 迭代器操作的正确使用
掌握这种"先排序后插入"的解题范式,能够有效解决一大类需要满足位置约束的算法问题。