【码道初阶】深入浅出解析Leetcode406进阶难度题,巧用排序+插入完成贪心解法

由浅入深解析LeetCode406:队列重建问题


问题描述

本题要求我们将打乱顺序的人群重新排列成一个队列,使得每个元素满足特定条件:对于队列中的每个人people[i] = [h_i, k_i],其前方正好k_i个身高大于或等于h_i的人。

示例

输入

people = [[7,0],[4,4],[7,1],[5,0],[6,1],[5,2]]

输出

[[5,0],[7,0],[5,2],[6,1],[4,4],[7,1]]

暴力解法的困境

直接尝试所有排列组合的时间复杂度为O(n!),显然无法处理大规模数据。我们需要寻找更高效的算法。


贪心算法核心思想

通过观察发现:高个子不会受矮个子插入的影响。因此我们可以:

  1. 从高到低处理人群:首先将所有人按身高从高到低排序,身高相同的人按k值从小到大排序。这样做的目的是确保在插入时,已经处理的人的身高都大于等于当前处理的人,从而保证插入位置的正确性。
  2. 按k值确定插入位置:依次处理排序后的每个人,根据其k值将其插入到结果队列的指定位置。由于之前已经按身高降序处理,插入时前面的人的身高必然大于等于当前人,因此k值直接决定了其应插入的位置。

关键洞察

  • 高个子先站好位置
  • 矮个子插入时,高个子的存在不会影响后续操作
  • 每个人插入的位置由其k值直接决定

算法实现详解

步骤一:排序策略

sort(people.begin(), people.end(), [](const vector<int>& a, const vector<int>& b) {
    if (a[0] == b[0]) return a[1] < b[1]; // 身高相同时,k小的在前
    return a[0] > b[0];                   // 身高降序排列
});

排序规则

  1. 身高降序排列(高个子优先处理)
  2. 身高相同时,k值升序排列(保证插入顺序正确)
    此处的sort排序用了lambda表达式

示例排序结果

[[7,0], [7,1], [6,1], [5,0], [5,2], [4,4]]

步骤二:插入过程

vector<vector<int>> queue;
for (const auto& p : people) {
    int pos = p[1];
    queue.insert(queue.begin() + pos, p);
}

操作逻辑

  1. 创建空队列
  2. 遍历排序后数组
  3. 将当前元素插入到queue[pos]位置

插入过程示例

当前处理元素插入位置队列状态演变
[7,0]0[[7,0]]
[7,1]1[[7,0], [7,1]]
[6,1]1[[7,0], [6,1], [7,1]]
[5,0]0[[5,0], [7,0], [6,1], [7,1]]
[5,2]2[[5,0], [7,0], [5,2], [6,1], [7,1]]
[4,4]4[[5,0], [7,0], [5,2], [6,1], [4,4], [7,1]]

关键问题解析

为什么直接使用整数索引会报错?

// 错误写法
queue.insert(pos, p);  // 类型不匹配!

// 正确写法
queue.insert(queue.begin() + pos, p);

根本原因

  • vector::insert()要求第一个参数是迭代器类型
  • 整数pos无法隐式转换为迭代器

迭代器原理

  1. queue.begin()返回指向第一个元素的迭代器
  2. + pos操作相当于指针偏移
  3. 示例:当pos=2时,begin()+2指向第三个元素前的位置

复杂度分析

  • 时间复杂度:O(n²)
    • 排序:O(n log n)
    • 插入操作:每次插入平均O(n)时间
  • 空间复杂度:O(n)

完整代码实现

#include <vector>
#include <algorithm>
using namespace std;

class Solution {
public:
    vector<vector<int>> reconstructQueue(vector<vector<int>>& people) {
        // 第一步:特殊排序
        sort(people.begin(), people.end(), [](const vector<int>& a, const vector<int>& b) {
            if (a[0] == b[0]) return a[1] < b[1];
            return a[0] > b[0];
        });
        
        // 第二步:按k值插入
        vector<vector<int>> queue;
        for (const auto& p : people) {
            auto pos = queue.begin() + p[1];
            queue.insert(pos, p);
        }
        return queue;
    }
};

贪心算法正确性证明

  1. 身高降序保证:后插入的矮个子不会影响已存在高个子的k值
  2. k值准确性:每个元素插入时,队列中已有元素的身高都≥当前元素
  3. 插入位置计算:k值直接对应需要的前置高个子数量

同类问题扩展

该算法模式可应用于以下类型问题:

  1. 需要满足位置约束的重建问题
  2. 多维条件排序问题
  3. 贪心选择策略适用的场景

总结

本题通过巧妙的排序策略和插入顺序选择,将原本复杂的问题转化为可高效解决的贪心算法问题。要进一步提升写贪心算法的能力,需要理解其中的两个关键点:

  1. 处理顺序决定算法可行性
  2. 迭代器操作的正确使用

掌握这种"先排序后插入"的解题范式,能够有效解决一大类需要满足位置约束的算法问题。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值