系列文章
本教程有同步的github地址
知识点
np.linsapce(-0.5, 0.5, 200)
生成从-0.5到0.5的均匀分布的200个数据点。包含首尾
numpy中花式索引的一个实例——数据升维,即原来是1维的数据列表,经过升维后形成每个数值为1维列表的2为列表。结果类似如下:
[1, 2, 3, 4] ==> [[1], [2], [3]]
arr = arr[:, np.newaxis]
np.random.normal(mean, stddev, shape)
用于生成一个随机正态分布(高斯分布)的数据,正态分布的均值为mean
,方差为stddev
,数据的维度为shape
。
tf.random_normal([1,10])
在tensorflow中形成[1,10 ]大小的张量,数据服从高斯分布。默认的均值为0,方差为0.1。
tf.nn.tanh()
是激活函数,图形类似于sigmod,但是tanh比sigmod更陡。
tf.global_variables_initializer()
初始化整个计算图中的变量。
示例
#%% md
# 回归模型
#%%
import tensorflow as tf
import numpy as np
import matplotlib.pyplot as p