推荐系统 — 初识

这篇博客介绍了推荐系统的基础知识,包括用户、物品和用户行为数据,以及三种主要推荐算法:基于人口统计的推荐、基于内容的推荐和协同过滤算法。协同过滤算法又分为基于用户和基于物品两种。博客还提及了排序和评测指标的重要性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

参考两篇特别喜欢的博文
https://zhuanlan.zhihu.com/p/23036112
https://blog.csdn.net/xsl_bj/article/details/51120643

一、认知导图
二、数据
用户本身

用户本身的信息,即用户的属性,比如年龄,性别,家庭等等。

物品本身

物品的关键字,属性等,比如颜色,是什么东西等等。

用户行为

用户的行为信息,查看,评分,购买,浏览时长等等。即用户和物品之间产生联系的信息。

三、算法
1、基于人口统计(用户)的推荐算法
  • 根据系统用户的基本信息发现用户的相关程度,然后将相似用户喜爱的其他物品推荐给当前用户。
  • 因为根据基本信息,因此无冷启动问题。
  • 不牵涉物品信息,可应用到很多领域。
  • 简单粗糙,效果一般。
2、基于内容的推荐算法
  • 根据系统物品的基本信息发现物品的相似程度,然后将相似物品推荐给当前用户。
  • 因为需要用到用户的行为信息,所以有冷启动的问题
3、协同过滤算法

协同过滤算法与上面不同之处在于,它基于用户的偏好信息去求相似程度。

a) 基于用户的协同过滤算法(UserCF)

【步骤】

  • 找到与目标用户兴趣相似的用户群;
  • 找到这个集合中用户喜欢的,而目标用户没有听说过得商品推荐;
  • 其中某种计算方法可以表示为,用户u和v的正反馈的商品集合为N(u),N(v)。
b) 基于内容的协同过滤算法(ItermCF)

通过用户对商品的行为来计算商品之间的相似度,其假设能够引起用户兴趣的商品,必定与其之前评分高的商品相似。
【步骤】

  • 计算商品之间的相似度
  • 根据商品的相似度和用户的历史行为,给用户生成推荐列表

PS:当然至于要不要针对物品的热门程度和针对用户的活跃度分配权重等,也是可以改进算法的地方。

c) 基于模型的协同过滤算法

机器学习方法等:常用的模型包括LSI、贝叶斯网络等。

四、排序

根据上面算法得到的结果,采用一定的排序规则,得到一系列的列表,推送给用户。目前只知道TopN,后续再调研。

五、评测指标

评价算法好坏的指标。这边我认为是相似度那边的评判,只有相似性搞好了,后面排序才能发挥作用,因此是一个回归问题等。后续还需要调研。

标题基于SpringBoot的在线网络学习平台研究AI更换标题第1章引言介绍基于SpringBoot的在线网络学习平台的研究背景、意义、国内外现状、论文研究方法及创新点。1.1研究背景与意义阐述在线网络学习平台的重要性及其在教育领域的应用价值。1.2国内外研究现状分析当前国内外在线网络学习平台的发展状况及趋势。1.3研究方法与创新点说明本研究采用的方法论和在研究过程中的创新之处。第2章相关理论技术概述SpringBoot框架、在线教育理论及相关技术基础。2.1SpringBoot框架概述介绍SpringBoot框架的特点、优势及其在Web应用中的作用。2.2在线教育理论阐述在线教育的基本理念、教学模式及其与传统教育的区别。2.3相关技术基础介绍开发在线网络学习平台所需的关键技术,如前端技术、数据库技术等。第3章在线网络学习平台设计详细描述基于SpringBoot的在线网络学习平台的整体设计方案。3.1平台架构设计给出平台的整体架构图,并解释各个模块的功能及相互关系。3.2功能模块设计详细介绍平台的主要功能模块,如课程管理、用户管理、在线考试等。3.3数据库设计说明平台的数据库设计方案,包括数据表结构、数据关系等。第4章平台实现与测试阐述平台的实现过程及测试方法。4.1平台实现详细介绍平台的开发环境、开发工具及实现步骤。4.2功能测试对平台的主要功能进行测试,确保功能正常且符合预期要求。4.3性能测试对平台的性能进行测试,包括响应时间、并发用户数等指标。第5章平台应用与分析分析平台在实际应用中的效果及存在的问题,并提出改进建议。5.1平台应用效果介绍平台在实际教学中的应用情况,包括用户反馈、使用情况等。5.2存在问题及原因分析分析平台在运行过程中出现的问题及其原因,如技术瓶颈、用户体验等。5.3改进建议与措施针对存在的问题提出具体的改进建议和措施,以提高平台的性能和用户满意度
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值