1、思想
- 最大化最小间隔
- 拉格朗日乘子法求解
2、推导过程

3、拓展知识点
- 软间隔,原来是最小间隔必须大于1,软了就是相对宽松些,可以有个 ϵ \epsilon ϵ.
- 核函数,橘黄色的部分,是特征向量内积,相当于把向量映射到一个上面去,增加分类的准确性。
- SVM多分类问题 https://www.cnblogs.com/CheeseZH/p/5265959.html
- 一对一
- 一对多
- 层次分类(有点类似决策树)
- SVM解回归问题:修改loss函数 。https://blog.csdn.net/luoshixian099/article/details/51121767