es搜索,统计

记得好几年前用es做过标签画像统计,如今再看es时已是很生疏了,再用时已更新到了7.12版本了。以前用TransportClient客户端,现在出了而且是官方推荐用RestHighLevelClient客户端。

这几天用RestHighLevelClient时还是觉得比较方便的。现将一些基本常用功能记录一下。


1.初始化和关闭

public static RestHighLevelClient getClient(String host, int port) {
        LOGGER.info("Init ES!");
        client \= new RestHighLevelClient(
                RestClient.builder(new HttpHost(host, port, "http")));
        return client;
    }

    public static void closeES() {
        LOGGER.info("ES closed!");
        if(null != client) {
            try {
                client.close();
            } catch (IOException e) {
                e.printStackTrace();
            }
        }
    }

2.创建index以及mapping

public boolean createIndexMapping(RestHighLevelClient client, String indexName){
        LOGGER.info("create index and mapping ...");
        CreateIndexRequest createIndexRequest \= new CreateIndexRequest(indexName);

        createIndexRequest.settings(Settings.builder()
                .put("index.number\_of\_shards",1)
                .put("index.number\_of\_replicas",0));

        try {
            XContentBuilder xContentBuilder \= XContentFactory.jsonBuilder().startObject().startObject("properties")
                    .startObject("content")
                    .field("type", "text") // 数据类型
                    .field("index", "true") //默认
                    .field("analyzer", "ik\_max\_word")
                    .field("search\_analyzer", "ik\_smart")
                    .endObject()  
  
                    .startObject("date")
                    .field("type", "date") // 数据类型
                    .field("index", "true") //默认
                    .endObject()
                    .startObject("title")
                    .field("type", "text") // 数据类型
                    .field("index", "true") //默认
                    .field("analyzer", "ik\_max\_word")
                    .field("search\_analyzer", "ik\_smart")
                    .endObject()

                    .endObject()
                    .endObject();

            createIndexRequest.mapping(xContentBuilder);
            CreateIndexResponse createIndexResponse \= client.indices().create(createIndexRequest, RequestOptions.DEFAULT);
            return createIndexResponse.isAcknowledged();
        } catch (IOException e) {
            e.printStackTrace();
        }

        return false;
    }

3.获取一篇doc

public Map<String, Object> getOneMap(RestHighLevelClient client, String index, String id) {
        GetRequest getRequest \= new GetRequest(index, id);
        GetResponse getResponse \= null;
        try {
            getResponse \= client.get(getRequest, RequestOptions.DEFAULT);
            if(getResponse.isExists()) {
                return getResponse.getSource();
            }
        } catch (IOException e) {
            e.printStackTrace();
        }
        return null;
    }

4.删除多篇

/\*\*
     \* 批量删除
     \* @param client
     \* @param index
     \* @param ids
     \* @return
     \*/
    public Object deleteList(RestHighLevelClient client, String index, List<String> ids) {
        //构建批量删除请求
        DeleteByQueryRequest request = new DeleteByQueryRequest(index);
        IdsQueryBuilder queryBuilder \= new IdsQueryBuilder();
        for(String id: ids) {
            queryBuilder.addIds(id);
        }
        // 匹配所有
        request.setQuery(queryBuilder);
        BulkByScrollResponse response \= null;
        try {
            response \= client.deleteByQuery(request, RequestOptions.DEFAULT);
        } catch (IOException e) {
            e.printStackTrace();
        }
        return JSONObject.toJSON(response);
    }

5.批量导入

/\*\*
     \* 批量导入
     \* @param client
     \* @param index
     \* @param list
     \* @return
     \*/
    public boolean insertDocByBulk(RestHighLevelClient client, String index, List<Doc> list) {
        //批量插入请求
        BulkRequest bulkRequest = new BulkRequest();
        bulkRequest.timeout("10s");
        for(int i = 0; i < list.size(); i++) {
            Doc doc \= list.get(i);
            //这里必须每次都使用new IndexRequest(index,type),不然只会插入最后一条记录(这样插入不会覆盖已经存在的Id,也就是不能更新)
            Map<String, Object> kv = new HashMap<>();
            kv.put("id", doc.getId());
            kv.put("title", doc.getTitle());
            kv.put("content", doc.getContent());

            bulkRequest.add(new IndexRequest(index).id(String.valueOf(doc.getId())).source(kv));
            //或者
            //bulkRequest.add(new IndexRequest(index).id(item.getID()).source(JSON.toJSONString(doc), XContentType.JSON));
        }

        try {
            // 客户端返回
            BulkResponse responses = client.bulk(bulkRequest, RequestOptions.DEFAULT);
            // responses.hasFailures(); // 是否失败,false表示成功!
            if(RestStatus.CREATED == responses.status()) {
                return true;
            }
        } catch (IOException e) {
            e.printStackTrace();
        }
        return false;
    }

6.批量更新

/\*\*
     \* 批量update
     \* @param client
     \* @param index
     \* @param list
     \* @return
     \*/
    public boolean updateDocByBulk(RestHighLevelClient client, String index, List<Doc> list) {
        //批量插入请求
        BulkRequest bulkRequest = new BulkRequest();
        bulkRequest.timeout("10s");
        for(int i = 0; i < list.size(); i++) {
            Doc doc \= list.get(i);
            //这里必须每次都使用new IndexRequest(index,type),不然只会插入最后一条记录(这样插入不会覆盖已经存在的Id,也就是不能更新)
            Map<String, Object> kv = new HashMap<>();
            kv.put("id", doc.getId());
            kv.put("title", doc.getTitle());
            kv.put("content", doc.getContent());

            bulkRequest.add(new UpdateRequest().index(index).id(String.valueOf(doc.getId())).doc(kv));
        }

        try {
            // 客户端返回
            BulkResponse responses = client.bulk(bulkRequest, RequestOptions.DEFAULT);
            // responses.hasFailures(); // 是否失败,false表示成功!
            if(RestStatus.OK == responses.status()) {
                return true;
            }
        } catch (IOException e) {
            e.printStackTrace();
        }
        return false;
    }

7.全量搜索

7.1 利用scroll

/\*\*
     \* 全量搜索
     \* @param client
     \* @param index
     \* @param field1
     \* @param field2
     \* @param query
     \* @param size
     \* @param include
     \* @param exclude
     \* @return
     \*/
    public List<org.elasticsearch.search.SearchHit> searchByQueryScrollAll(RestHighLevelClient client, String index, String field1, String field2, String query, int size, String\[\] include, String\[\] exclude) {
        List<org.elasticsearch.search.SearchHit> result = CollectionUtil.newArrayList();
        final Scroll scroll = new Scroll(TimeValue.timeValueMinutes(1L));
        SearchRequest searchRequest \= new SearchRequest(index);
        searchRequest.scroll(scroll);
        SearchSourceBuilder searchSourceBuilder \= new SearchSourceBuilder();
        // 高亮显示
        HighlightBuilder highlightBuilder = new HighlightBuilder();
        // 高亮标签
        highlightBuilder.preTags("<a style='color: #e4393c'>");
        highlightBuilder.postTags("</a>");
        // 高亮字段
        highlightBuilder.field(field2);
        //设置最多一次能够取出(size)笔数据,从第(size + 1)笔数据开始,将开启滚动查询。  (滚动查询也属于这一次查询,只不过因为一次查不完,分多次查)
        searchSourceBuilder.size(size);
        //searchSourceBuilder.sort("\_score", SortOrder.DESC);
        //socre相同,则按时间降序排序
        //searchSourceBuilder.sort("publish\_date", SortOrder.DESC);
        //高亮显示添加到构造器(不需要高亮显示则不添加)
        searchSourceBuilder.highlighter(highlightBuilder);
        // 多字段联合查询
        //searchSourceBuilder.query(QueryBuilders.multiMatchQuery(query, field1, field2));
        searchSourceBuilder.query(QueryBuilders.boolQuery()
                .should(QueryBuilders.matchQuery(field1, query))
                .must(QueryBuilders.matchQuery(field2, query)));
        searchSourceBuilder.fetchSource(include, exclude);
        searchRequest.source(searchSourceBuilder);
        SearchResponse searchResponse \= null;
        try {
            searchResponse \= client.search(searchRequest, RequestOptions.DEFAULT);
        } catch (IOException e) {
            e.printStackTrace();
        }
        String scrollId \= searchResponse.getScrollId();
        org.elasticsearch.search.SearchHit\[\] searchHits \= searchResponse.getHits().getHits();
        while (searchHits != null && searchHits.length > 0) {
            for(org.elasticsearch.search.SearchHit hit: searchHits) {
                //String highlightText = hit.getHighlightFields().get(field2).getFragments()\[0\].toString();
                result.add(hit);
            }
            SearchScrollRequest searchScrollRequest \= new SearchScrollRequest(scrollId);
            searchScrollRequest.scroll(scroll);
            try {
                searchResponse \= client.scroll(searchScrollRequest, RequestOptions.DEFAULT);
            } catch (IOException e) {
                e.printStackTrace();
            }
            scrollId \= searchResponse.getScrollId();
            searchHits \= searchResponse.getHits().getHits();
        }

        if(null != scrollId) {
            ClearScrollRequest clearScrollRequest \= new ClearScrollRequest();
            clearScrollRequest.addScrollId(scrollId);
            // 滚动完成后清除滚动上下文
            ClearScrollResponse clearScrollResponse = null;
            try {
                clearScrollResponse \= client.clearScroll(clearScrollRequest, RequestOptions.DEFAULT);
            } catch (IOException e) {
                e.printStackTrace();
            }
            //清除滚动是否成功
            boolean succeeded = clearScrollResponse.isSucceeded();
        }
        return result;
    }

7.2利用after

/\*\*
     \* 全量搜索
     \* @param client
     \* @param index
     \* @param field1
     \* @param field2
     \* @param query
     \* @param size
     \* @param include
     \* @param exclude
     \* @return
     \*/
    public List<org.elasticsearch.search.SearchHit> searchByQuerySearchAfter(RestHighLevelClient client, String index, String field1, String field2, String query, int size, String\[\] include, String\[\] exclude) {
        List<org.elasticsearch.search.SearchHit> result = CollectionUtil.newArrayList();
        SearchRequest request \= new SearchRequest(index);
        SearchSourceBuilder searchSourceBuilder \= new SearchSourceBuilder();
        // 高亮显示
        HighlightBuilder highlightBuilder = new HighlightBuilder();
        // 高亮标签
        highlightBuilder.preTags("<a style='color: #e4393c'>");
        highlightBuilder.postTags("</a>");
        // 高亮字段
        highlightBuilder.field(field2);
        QueryBuilder queryBuilder \= QueryBuilders.boolQuery()
                .should(QueryBuilders.matchQuery(field1, query))
                .must(QueryBuilders.matchQuery(field2, query));

        // searchSourceBuilder.query(QueryBuilders.matchQuery(field, query));
        searchSourceBuilder.query(queryBuilder);
        searchSourceBuilder.fetchSource(include, exclude);
        //每页显示条数
        searchSourceBuilder.size(size);
        // 需要唯一不重复的字段作为排序
        searchSourceBuilder.sort("\_id", SortOrder.DESC);
        //searchSourceBuilder.sort("\_score", SortOrder.DESC);
        //score相同,则按时间降序排序
        //searchSourceBuilder.sort("publish\_date", SortOrder.DESC);
        //高亮显示添加到构造器(不需要高亮显示则不添加)
        searchSourceBuilder.highlighter(highlightBuilder);
        //构造器添加到搜索请求
        request.source(searchSourceBuilder);
        //客户端返回
        SearchResponse response = null;
        try {
            response \= client.search(request, RequestOptions.DEFAULT);
            //搜索结果
            org.elasticsearch.search.SearchHit\[\] hits = response.getHits().getHits();
            while(hits.length > 0) {
                for(org.elasticsearch.search.SearchHit hit : hits) {
                    result.add(hit);
                }
                org.elasticsearch.search.SearchHit last \= hits\[hits.length - 1\];
                searchSourceBuilder.searchAfter(last.getSortValues());
                response \= client.search(request, RequestOptions.DEFAULT);
                hits \= response.getHits().getHits();
            }
        } catch (IOException e) {
            e.printStackTrace();
        }
        return result;
    }

8.统计分析

/\*\*
     \* 多field统计
     \* @param client
     \* @param index
     \* @param query
     \* @param field1
     \* @param field2
     \* @param aggFields
     \*/
    public static Map<String, Map<String, Long>> countDocByTermsAgg(RestHighLevelClient client, String index, String query, String field1, String field2, String ... aggFields) {
        SearchSourceBuilder searchSourceBuilder \= new SearchSourceBuilder();
        searchSourceBuilder.fetchSource(false);
        SearchRequest request \= new SearchRequest(index);
        QueryBuilder queryBuilder \= QueryBuilders.boolQuery()
                .should(QueryBuilders.matchQuery(field1, query))
                .must(QueryBuilders.matchQuery(field2, query));
        searchSourceBuilder.query(queryBuilder);
        Map<String, Map<String, Long>>  fieldAggMap = CollectionUtil.newLinkedHashMap();
        TermsAggregationBuilder aggregationBuilder;
        SearchResponse response \= null;
        for(String fieldName : aggFields) {
            aggregationBuilder \= AggregationBuilders.terms("agg\_name").field(fieldName);
            searchSourceBuilder.aggregation(aggregationBuilder);
            request.source(searchSourceBuilder);
            searchSourceBuilder.size(0);
            try {
                response \= client.search(request, RequestOptions.DEFAULT);
            } catch (IOException e) {
                e.printStackTrace();
            }
            Aggregations aggregations \= response.getAggregations();
            Terms byTopicAggregation \= aggregations.get("agg\_name");
            List<? extends Terms.Bucket> buckets = byTopicAggregation.getBuckets();
            Map<String, Long> bucketsFieldsAgg = CollectionUtil.newLinkedHashMap();
            buckets.forEach(b \->
                    bucketsFieldsAgg.put(b.getKeyAsString(), b.getDocCount())
            );
            fieldAggMap.put(fieldName, bucketsFieldsAgg);
        }
        return fieldAggMap;
    }
    
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值