在数字化和大数据的时代,如何准确预测未来变成了一个越来越重要的议题。无论是预测股市走势,还是了解未来的气候变化,时间序列分析都是一个不可或缺的工具。其中ARIMA(自回归积分移动平均模型)便是时间序列分析中最为经典和广泛应用的模型之一。然而对于大多数没有统计或机器学习背景的人来说,ARIMA和时间序列分析可能听起来像是遥不可及的专业术语。
这篇文章旨在用最简单、最直观的方式解析ARIMA模型以及其在Python中的应用。从基础的概念开始,探讨什么是数据的平稳性,为什么平稳性对时间序列分析如此关键。实用的方法和技术比如ADF检验和差分法能更好地理解和使用ARIMA模型。
ARIMA
ARIMA(自回归积分滑动平均)模型是一种用于时间序列分析的统计模型,它通过结合自回归(AR)、差分(I)和移动平均(MA)这三大部分来处理和预测时间序列数据。首先,自回归部分(AR)使用时间序列的历史数据和其滞后值之间的关系来进行预测。其次,积分部分(I)通过计算差分使得时间序列平稳,即消除趋势和季节性波动的影响。最后,移动平均部分(MA)通过滞后残差来调整模型,解决误差的累积影响。
模型组成 | 解释 |
---|---|
AR(自回归) | 根据时间序列自身的滞后值进行回归,利用过去的数据点预测当前值。 |
I(差分) | 通过对数据求差分, |