机器学习-39-对ML的思考之深度学习如何应对标准数据集的不完美

1 应对数据集的不完美

“别人采集的数据”,问题非常之多。不要轻易相信“别人采集的数据”的,因为数据采集中包含了太多的不确定性。数据挖掘研究人员只是意识到了“别人采集的数据”导致的“垃圾进,垃圾出”,但是,并不了解数据采集里面的弯弯绕。

1.1 拿来即用(经典机器学习)

经典机器学习是不研究数据采集的,对于数据,通常只是对给定的数据集,执行特征选择或者特征抽取操作。

1.2 另辟蹊径(深度学习)

深度学习则是用另一种方法解决数据问题的。

比如Iris数据集的4个特征:萼片长度、萼片宽度、花瓣长度和花瓣宽度,《深度学习》一书里面把它们称为“手工设计的特征”。
在这里插入图片描述

深度学习放弃了这种手工方法,而是使用一种叫“表示学习”的方法来获取特征,它可以通过较简单的表示(特征)来表达复杂表示(特征),解决了表示学习中的核心问题。从而,使得深度学习可以不完全依赖“别人采集的数据”。

深度学习可以从图像像素中识别简单特征,然后用简单特征组合成越来越复杂的特征。从这个意义上说,深度学习的“深度”,其实是指数据。因为,如果我们有好数据,可以不必要“深度”学习的

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

皮皮冰燃

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值