皮皮冰燃
故障诊断、信号分析、大数据处理、python编程、深度学习、大模型的应用、RAG系统
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
数据分析-59-SPC统计过程控制XR图和XS图和IMR图和CPK分析图
XR控制图:子样本数量较小。XS控制图:子样本数量较大。IMR图。CPK分析图。原创 2025-07-08 08:56:39 · 398 阅读 · 0 评论 -
数据分析-58-SPC统计过程控制的8个判异准则
八大判异准则由Western Electric公司提出,广泛应用于X-bar-R图、X-bar-S图、I-MR图等控制图分析。原创 2025-07-08 08:38:46 · 258 阅读 · 0 评论 -
数据分析-57-基于SPSSPRO的低代码在线分析工具
基于SPSSPRO,可以通过拖拉拽的方式轻松进行数据分析,无需编程基础。原创 2025-04-14 14:00:08 · 522 阅读 · 0 评论 -
数据分析-56-深入理解假设检验的步骤和T检验的应用案例
假设检验的目的是通过样本数据来验证或拒绝一个关于总体参数的假设,它广泛应用于医学研究、社会科学、市场分析等领域,举例单样本T检验和独立样本T检验。原创 2025-02-18 09:06:22 · 326 阅读 · 0 评论 -
数据分析-55-时间序列分析之获取时间序列的自然周期时间区间
根据自然周期(1)获取某年的总天数。(2)获取某年的总周数。(3)获取某日期属于某年的周数。(4)获取某年某周的开始时间和结束时间。(5)获取往前num周期的开始时间和结束时间。原创 2025-01-10 11:08:22 · 759 阅读 · 0 评论 -
数据分析-54-时间序列分析之滑动窗口处理及连续触发的判断逻辑
窗口函数用于执行一系列统计计算,如移动平均、累积求和等。这些计算通常基于数据的一个固定大小的窗口,并且可以沿着数据集滑动应用。原创 2024-12-24 15:02:20 · 533 阅读 · 0 评论 -
数据分析-53-时间序列分解之奇异谱分析SSA
通过对信号构造延迟向量并进行奇异值分解,来分析信号的周期性、趋势和噪声。原创 2024-12-09 15:29:19 · 245 阅读 · 0 评论 -
数据分析-52-时间序列分解之变分模态分解VMD
利用变分原理找到信号的最佳模态基,可以同时估计信号的模态和对应的频率,适合处理含有多个频率成分的信号。原创 2024-11-29 13:24:32 · 836 阅读 · 0 评论 -
数据分析-51-时间序列分解之局部均值分解LMD
通过检测信号的局部均值合局部波动来分解信号,适用于含有频率变化和瞬时频率分析的信号。原创 2024-11-19 13:54:41 · 414 阅读 · 0 评论 -
数据分析-50-时间序列信息编码之采用正余弦循环编码
2pi是因为一个完整的圆/周期有2pi的弧度。转换后除以的周期持续时间(日、周或年)。然后就可以将每个时间戳映射到一个唯一的角度,该角度通过乘以弧度数来表示它在周期中的位置。原创 2024-11-18 16:12:22 · 503 阅读 · 0 评论 -
数据分析-49-时间序列信息编码之采用虚拟变量
提取时间戳的特定部分,如小时、周天、月份等,用于捕捉周期性模式。One-hot编码简单且易于实现,在Python中,最简单的方法是使用pd.get_dummies。原创 2024-11-18 16:10:30 · 418 阅读 · 0 评论 -
数据分析-48-时间序列变点检测之在线实时数据的CPD
时间序列通常会经历结构性断裂或变化,这些变化会引入非平稳性,从而改变时间序列的整体分布,这些标志着变化开始的时间点被称为变化点。Changefinder模块适用于实时数据的变点检测,对于变点得分查找位置索引,使用简单排序法和归并排序法进行了对比。原创 2024-11-15 10:53:52 · 1004 阅读 · 0 评论 -
数据分析-47-时间序列变点检测之离线历史数据的CPD
时间序列通常会经历结构性断裂或变化,这些变化会引入非平稳性,从而改变时间序列的整体分布,这些标志着变化开始的时间点被称为变化点。Ruptures库提供了多种变化点检测算法的实现,包括PELT(修剪精确线性时间)、基于核的算法和动态规划算法等。原创 2024-11-15 10:18:47 · 610 阅读 · 0 评论 -
数据分析-46-时间序列显示之如何精准可视化多个时间序列数据
可视化时间序列数据是具有挑战性,尤其是涉及多个数据集时。精心设计的可视化不仅能清晰地传达信息,还能减少观察者的认知负荷,使其更容易提取有意义的洞察。原创 2024-11-13 14:01:16 · 354 阅读 · 0 评论 -
数据分析-45-时间序列预测之使用LSTM的错误及修正方式
一般使用窗口和多步的方法构建数据集,但存在预测时会将未来值作为输入的问题。原创 2024-11-11 16:59:51 · 437 阅读 · 0 评论 -
数据分析-44-时间序列预测之深度学习方法TCN
TCN通过使用卷积操作代替递归结构,能够并行处理输入数据,减少训练时间。TCN使用因果卷积和扩张卷积来捕捉时间序列中的长期依赖关系。原创 2024-11-08 15:23:19 · 911 阅读 · 0 评论 -
数据分析-43-时间序列预测之深度学习方法GRU
GRU是LSTM的简化版本,它通过合并LSTM中的遗忘门和输入门简化了结构,使得计算效率更高。在某些任务上,GRU的表现与LSTM相当甚至更好,且参数较少,训练速度更快。原创 2024-11-08 10:20:35 · 289 阅读 · 0 评论 -
数据分析-42-时间序列预测之深度学习方法LSTM
LSTM 是一种改进的循环神经网络,专门设计用于处理序列数据中的长期依赖问题。标准的 RNN 容易出现梯度消失,导致无法有效捕捉长时间依赖关系,而 LSTM 通过引入记忆单元和门控机制来缓解这一问题。原创 2024-11-07 14:49:52 · 187 阅读 · 0 评论 -
数据分析-41-时间序列预测之机器学习方法XGBoost
XGBoost 是一种基于梯度提升(Gradient Boosting)的集成学习方法。它通过逐步构建决策树,每棵树都在前一棵树的残差(误差)基础上进行学习,以最小化损失函数。原创 2024-11-06 11:12:54 · 547 阅读 · 0 评论 -
数据分析-40-时间序列预测之机器学习方法随机森林
随机森林是一种集成学习算法,通过构建多个决策树来提高模型的稳定性和泛化能力。它的核心思想是通过随机采样来构建多棵决策树,每棵树都在样本的不同子集上训练,最终通过对所有树的预测结果进行平均(回归问题)或投票(分类问题)来生成最终预测。原创 2024-11-06 11:11:43 · 245 阅读 · 0 评论 -
数据分析-39-时间序列分解之经验小波分解EWT
结合了小波分析和经验模态分解的优点,自适应地生成小波基来适应信号特性,适用于具有时变特性的信号分析。原创 2024-11-05 13:23:11 · 587 阅读 · 0 评论 -
数据分析-38-时间序列分解之时变滤波器经验模态分解TVFEMD
结合时变滤波器特性与EMD,适应信号中随时间变化的特性进行分解。原创 2024-11-05 13:22:22 · 524 阅读 · 0 评论 -
数据分析-37-时间序列分解之完全自适应噪声集合经验模态分解CEEMDAN
CEEMDAN是CEEMD的一个改进版,确保了在每次分解中噪声的自适应性,进一步优化了分解质量和稳定性。原创 2024-11-01 14:54:19 · 161 阅读 · 0 评论 -
数据分析-36-时间序列分解之互补集合经验模态分解CEEMD
CEEMD在EEMD的基础上更进一步,通过添加正负成对的辅助白噪声,然后分别进行EMD分解并求平均,以更有效地消除噪声影响,提高分解质量。原创 2024-11-01 14:52:19 · 425 阅读 · 0 评论 -
数据分析-35-时间序列分解之集合经验模态分解EEMD
为了解决EMD中的模态混叠问题,EEMD通过向原始信号中添加少量白噪声并多次执行EMD来实现,然后对结果取平均,以抑制由随机性引入的偏差,提高分解的稳定性和可靠性。原创 2024-11-01 14:50:52 · 339 阅读 · 0 评论 -
数据分析-34-时间序列分解之经验模态分解EMD
EMD是一种自适应的数据分析方法,能够将复杂信号分解为一系列本征模态函数IMFs,每个IMF代表信号中不同尺度的振动模式,从而揭示信号的多尺度特征,特别适合非线性非平稳信号的分析。原创 2024-11-01 14:49:26 · 323 阅读 · 0 评论 -
数据分析-33-时间序列特征工程及feature-engine库的应用
Feature-engine是一款旨在简化机器学习模型特征工程流程的开源Python库。它提供了一系列工具和技术,可高效进行特征工程,包括但不限于缺失数据填补、变量转换、编码和特征选择等功能。原创 2024-10-28 16:44:49 · 220 阅读 · 0 评论 -
数据分析-32-时间序列分析的文本类型数据可视化方式
对于时间序列文本数据,可以使用时间线或时间轴来展示数据随时间的变化。原创 2024-10-22 13:12:30 · 414 阅读 · 0 评论 -
数据分析-31-时间序列分析的卡尔曼滤波器平滑方法
卡尔曼滤波是一种递归滤波算法,广泛用于动态系统的状态估计,能够处理噪声干扰。它通过贝叶斯推断动态调整对当前状态的估计,适合平滑和预测时间序列。原创 2024-10-21 10:30:52 · 537 阅读 · 0 评论 -
数据分析-30-电影死亡笔记中的数据分析思维
电影死亡笔记中,根据L对三个问题的推理,体会数据分析思维的美感原创 2024-10-01 18:02:46 · 1057 阅读 · 4 评论 -
数据分析-29-基于pandas的窗口操作和对JSON格式数据的处理
理解时间序列滑动窗口的思想,基于pandas滑动窗口rolling函数进行分析,非常规但很实用的基于resample函数分组的功能。原创 2024-10-01 07:46:46 · 373 阅读 · 0 评论 -
数据分析-28-交互式数据分析EDA工具和低代码数据科学工具
python中的低代码数据分析工具,支持EDA数据探索的工具,如Dataprep,Dtable原创 2024-10-01 08:31:06 · 563 阅读 · 0 评论 -
数据分析-27-基于pandas进行模糊匹配merge_asof和groupby分组统计
pandas.merge_asof()函数是pandas库中的一个非常实用的函数,用于根据时间戳将两个数据集进行合并。该函数可以很好地处理时间戳不完全匹配的情况,并进行模糊匹配。理解groupby:split(分割)、apply(应用)、combine(组合)。(1)split:按照指定的key分割dataframe;(2)apply:对每个组应用聚合函数;(3)combine:将所有的聚合结果合并成一个数据框。原创 2024-10-01 07:25:04 · 842 阅读 · 0 评论 -
数据分析-26-时间序列预测之基于ARIMA的时间序列数据分析
使用ARIMA模型对国际航空乘客数据进行了建模和预测。结果表明,ARIMA模型在一定程度上能够准确预测未来的乘客数量,尤其是在季节性趋势较为明显的情况下。原创 2024-09-13 15:35:01 · 349 阅读 · 0 评论 -
数据分析-25-时间序列预测之基于keras的LSTM+注意力机制预测风速
将LSTM与注意力机制结合时,通常的做法是在LSTM的输出上引入注意力权重,以便模型可以根据不同时间步的重要性来聚焦不同部分的输入序列。这有助于模型更有效地学习序列数据的长期依赖关系。原创 2024-09-13 15:28:32 · 447 阅读 · 0 评论 -
数据分析-24-时间序列预测之基于keras的VMD-LSTM和VMD-CNN-LSTM预测风速
基于keras的VMD-LSTM和VMD-CNN-LSTM预测风速进行效果对比,变分模态分解后结合CNN提取特征原创 2024-09-13 15:26:11 · 215 阅读 · 0 评论 -
数据分析-23-时间序列预测之基于keras中LSTM预测单单和多单和多多模式
基于keras对单输入单输出模式、多输入单输出模式、多输入多输出模式下LSTM的预测效果进行对比分析原创 2024-09-13 15:22:34 · 307 阅读 · 0 评论 -
数据分析-22-时间序列预测之基于PyTorch的LSTM和CNN-LSTM效果对比
对比LSTM和CNN-LSTM在单变量模型预测中的效果,并使用LSTM训练多变量模型原创 2024-09-13 15:18:38 · 117 阅读 · 0 评论 -
数据分析-21-时间序列预测之基于PyTorch中的LSTM与EMD-LSTM效果对比
先经过经验模态EMD分解,然后通过数据预处理,制作和加载数据集与标签,最后通过Pytorch实现EMD-LSTM模型对风速数据的预测,对比LSTM和EMD-LSTM的预测效果原创 2024-09-12 10:26:31 · 161 阅读 · 0 评论 -
数据分析-20-时间序列预测之基于PyTorch的LSTM数据准备及模型训练流程
基于PyTorch训练模型的一般步骤1 数据加载、2 去除异常值、3 数据归一化、4 切分窗口、5 制作数据集加载器、6 定义模型、7 训练模型、8 模型评估。原创 2024-09-11 17:34:21 · 686 阅读 · 0 评论