皮皮冰燃
故障诊断、信号分析、大数据处理、python编程、深度学习、大模型的应用、RAG系统
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
机器学习-44-对ML的思考之NP问题对AI以及Science的影响
(1)面对NP问题,当前主流AI用的是近似计算的方案。(2)面对NP问题,Science用的是专业分工与合作的方案,不同专业往往采用不同的工具与技术。以近似计算为基础的深度学习与AGI ,难以胜任AI for Science的任务。原创 2025-05-21 08:57:06 · 174 阅读 · 0 评论 -
机器学习-43-可解释性机器学习库LIME
LIME (Local Interpretable Model-agnostic Explanations)是一个强大的Python库,可以帮助解释机器学习分类器(或模型)正在做什么。LIME的主要目的是为复杂ML模型做出的单个预测提供可解释的、人类可读的解释。原创 2024-12-23 17:33:01 · 442 阅读 · 0 评论 -
机器学习-42-根据训练和验证指标曲线确认模型训练的改进方向
对训练和验证可能产生的情况进行总结,并介绍这些图表到底能为我们提供什么样的信息。原创 2024-12-17 10:51:30 · 214 阅读 · 0 评论 -
机器学习-41-对ML的思考之从开普勒的研究过程看科学范式
如果按照今天的机器学习理论,可能根本就没有开普勒什么事了。开普勒发现的火星位置误差,根本就不叫事,因为这点误差是机器学习理论所允许的。原创 2024-11-25 13:59:14 · 561 阅读 · 0 评论 -
机器学习-40-对ML的思考之确定性AI(专家系统GOFAI)和不确定性AI(基于统计学)
确定性AI和不确定性AI的特点,传说中的专家系统是什么样子的原创 2024-11-25 13:40:40 · 128 阅读 · 0 评论 -
机器学习-39-对ML的思考之深度学习如何应对标准数据集的不完美
不要轻易相信“别人采集的数据”的,因为数据采集中包含了太多的不确定性原创 2024-11-20 14:53:27 · 193 阅读 · 0 评论 -
机器学习-38-对ML的思考之探寻Iris数据集的来源及并非完美的标准数据集
为什么这么简单的一个数据集,能够用到上百年?从1936年至今,已经80多年了。根据现在的情况看,该数据集还将继续被大量使用,只要再用十几年,就到100年了。原创 2024-11-19 13:57:43 · 203 阅读 · 0 评论 -
机器学习-37-对ML的思考之机器学习发展的三个阶段和驱动AI发展三驾马车的由来
驱动人工智能发展的三驾马车,数据+算法+算力,不用费力采集数据,算力已经大幅度提升,机器学习研究人员只需要找到小创新点,优化一下算法,利用标准数据集做做实验就能发论文了。但也有一个问题:面对“算法适合什么样的数据”问题,大多数论文都避而不谈,只是找若干数据集,通过实验结果来说明自己算法的有“性能优化”就了事。至于是否是真的有“性能优化”,估计只有天知道。原创 2024-11-13 16:32:36 · 459 阅读 · 0 评论 -
机器学习-36-对ML的思考之机器学习研究的初衷及科学研究的期望
今天的机器学习,特别是深度学习,已经取得了很大的成绩;但是,今天的机器学习,却与早期机器学习的研究目标(让机器自己能够学习知识,那么就能绕开知识工程师和领域专家获取知识)相去甚远。我们不应该让AI只是一味地模拟视觉、语音、语言等人类自身的基本技能,而是要让AI拥有和人类一样认识自然和改造自然的能力。人类认识自然和改造自然的能力,离不开科学研究。原创 2024-11-12 16:31:35 · 343 阅读 · 0 评论 -
机器学习-35-提取时间序列信号的特征
基于领域特定的方法、基于频率的方法(抽取FFT后的最大值和峰值频率)、基于时间的方法、基于统计的方法。原创 2024-11-12 15:24:02 · 429 阅读 · 0 评论 -
机器学习-34-对ML的思考之PAC学习理论和标准数据集对机器学习的影响
站在科学的角度看,PAC学习理论与UCI机器学习数据库对机器学习的影响是负面的,但是,它们却让机器学习研究得以慢慢发展起来,至少发论文更容易了。原创 2024-11-11 20:55:17 · 386 阅读 · 0 评论 -
机器学习-33-机理模型和非机理模型
机器学习中涉及的机理模型与非机理模型的特点,以及融合使用的场景,在缺少数据的情况下如何建立模型。原创 2024-08-30 16:00:07 · 1316 阅读 · 0 评论 -
机器学习-32-机器学习的进阶路径
为机器学习初学者规划一个全面且科学的学习路径,旨在帮助初学者从基础到进阶,再到专业应用,逐步掌握机器学习领域的核心知识和技能。原创 2024-08-26 16:53:43 · 245 阅读 · 0 评论 -
机器学习-31-多变量异常检测LOF算法(实战)
多变量的异常检测:局部异常因子原创 2024-08-02 17:25:52 · 325 阅读 · 0 评论 -
机器学习-30-基于Seaborn的数据可视化
线图,显示趋势或模式。点图,可以用来观察变量之间的相关性、分布和离群值。柱状图,用于显示不同类别或分组的数据的数量或频率。条形图,通常用于可视化横向排列的数据。直方图,用于可视化数值数据的分布情况的图表类型。密度图,可以显示数据的分布形状和峰值。箱线图,可视化数值数据分布和离群值的图表类型。小提琴图,显示了数据的密度分布,并在图的两侧绘制了箱线图。热力图,可用于可视化相关性矩阵、协方差矩阵、数据的密度分布等。聚类图,通常是基于热力图的,通过颜色编码来表示数据点之间的相似性。原创 2024-08-02 08:52:40 · 132 阅读 · 0 评论 -
机器学习-29-多变量异常检测在区域供热系统中的应用(实战)
多变量异常检测:马哈拉诺比斯距离、主成分分析原创 2024-08-01 17:34:33 · 163 阅读 · 0 评论 -
机器学习-28-多变量异常检测库PyOD的功能介绍
PyOD是一个专注于异常检测(Outlier Detection)的 Python 库。原创 2024-08-01 17:30:48 · 370 阅读 · 0 评论 -
机器学习-27-机器学习入门科普文章
主要对机器学习进行科普,包括机器学习的定义、范围、方法,包括机器学习的研究领域:模式识别、计算机视觉、语音识别、自然语言处理、统计学习和数据挖掘。原创 2020-10-12 21:19:54 · 565 阅读 · 0 评论 -
机器学习-26-数据分析及统计分析
方差分析、正态性检验原创 2022-03-11 15:57:56 · 104 阅读 · 0 评论 -
机器学习-25-常用的数据预处理算法
常用的数据预处理算法,如采样、缺失值处理、异常值处理原创 2022-03-11 15:57:17 · 88 阅读 · 0 评论 -
机器学习-24-基于python的大数据挖掘和分析流程
python中常用的数据挖掘工具包和一般的数据分析流程原创 2022-01-16 16:31:39 · 137 阅读 · 0 评论 -
机器学习-23-模式识别可以说是机器学习的另一个名称
模式识别与统计学、心理学、语言学、 计算机科学 、生物学、控制论等都有关系。它与人工智能 、 图像处理的研究有交叉关系。原创 2022-01-09 09:43:50 · 72 阅读 · 0 评论 -
机器学习-22-机器学习的流程和常用的机器学习算法
有监督、无监督、数据预处理等算法的整体归类原创 2022-01-20 21:03:42 · 88 阅读 · 0 评论 -
机器学习-21-机器学习和深度学习的开源框架
AI->ML->DL中机器学习和深度学习常用的开源框架原创 2020-10-11 20:51:51 · 184 阅读 · 0 评论 -
机器学习-20-基于交互式web应用框架streamlit的基础使用教程
streamlit的基础使用教程以及配合FastAPI的应用方式原创 2024-07-19 16:41:10 · 396 阅读 · 0 评论 -
机器学习-19-基于交互式web应用框架streamlit和gradio转化数据和机器学习模型
将数据和机器学习模型转变为功能性的Web应用程序原创 2024-07-19 16:33:18 · 2679 阅读 · 0 评论 -
机器学习-18-统计学与机器学习中回归的区别以及统计学基础知识
统计学与机器学习的联系原创 2024-07-19 16:29:11 · 545 阅读 · 0 评论 -
机器学习-17-分布式梯度提升库XGBoost在钻石数据集上的应用(实战)
基于钻石数据集介绍XGBoost的使用方式原创 2024-07-19 16:17:17 · 1144 阅读 · 0 评论 -
机器学习-16-分布式梯度提升库XGBoost的应用
XGBoost在分类、回归以及参数优化方面的使用原创 2024-07-14 16:39:05 · 263 阅读 · 0 评论 -
机器学习-15-部署机器学习模型的经历(实战)
KMeans聚类、streamlit部署模型原创 2024-06-10 13:49:23 · 133 阅读 · 0 评论 -
机器学习-14-重温经典的用户流失数据挖掘竞赛(实战)
逻辑回归、支持向量机等原创 2024-06-10 13:47:42 · 535 阅读 · 0 评论 -
机器学习-13-基于决策树算法构建北京市空气质量预测模型(实战)
逻辑回归、KNN、决策树模型,并绘制混淆矩阵和ROC曲线原创 2024-06-10 13:45:38 · 808 阅读 · 0 评论 -
机器学习-12-开源的机器学习可视化拖拉拽工具orange3的应用
orange3可视化机器学习、拖拉拽编程工具原创 2024-05-31 10:08:49 · 745 阅读 · 0 评论 -
机器学习-11-使用kaggle命令下载数据集和操作指南
kaggle的操作指南,下载数据集到本地的方式原创 2024-05-30 17:03:51 · 917 阅读 · 0 评论 -
机器学习-10-可解释性机器学习库Shapash
机器学习黑盒模型的可解释性原创 2024-05-29 17:21:14 · 468 阅读 · 0 评论 -
机器学习-9-python中的pipeline以及sklearn中的pipeline
pipeline管道的使用方式原创 2024-05-29 16:49:31 · 437 阅读 · 1 评论 -
机器学习-8-超参数寻优的常用算法
超参数寻优,随机搜索、网格搜索、贝叶斯搜索、强化学习、粒子群原创 2024-05-29 15:18:54 · 680 阅读 · 0 评论 -
机器学习-7-机器学习中常用的可视化方式总结
决策边界、混淆矩阵、ROC曲线、精确率召回率曲线等的可视化方式原创 2024-05-28 17:05:49 · 405 阅读 · 0 评论 -
机器学习-6-对随机梯度下降算法SGD的理解
随机梯度下降优化算法原创 2024-05-28 17:00:50 · 476 阅读 · 0 评论 -
机器学习-5-如何进行交叉验证
选择不同的交叉验证方式原创 2024-05-28 16:57:06 · 223 阅读 · 0 评论