GBPR: Group Preference Based Bayesian Personalized Ranking for One-Class Collaborative Filtering

针对BPR方法中的独立用户和单一产品偏好的假设,文章提出了GBPR方法,引入用户间的交互和群偏好概念,以适应更复杂的用户行为和相关性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

摘要

在BPR方法中有两个基本假设可能不总是成立的:(1)两个用户之间彼此独立(2)对个体而言,两个产品的成对偏好。基于此这篇文章提出一种新的改进的假设:引入用户之间丰富的交互作用,所提方法为group Bayesian personalized ranking (GBPR)。作者引入了“群偏好”的概念,来放松之前提到的个体性假设和独立性假设。

作者认为即使用户对产品 i 表达过偏好,而对产品

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值