深度学习数学基础-概率与信息论

本文详细介绍了概率论与信息论在人工智能领域的应用,包括概率分布、随机变量、期望与方差、协方差以及常用概率分布如伯努利分布和高斯分布。还探讨了条件概率、贝叶斯定理、信息论中的相对熵和交叉熵,为深度学习和机器学习奠定了数学基础。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

评论 11
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

嵌入式视觉

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值