描述
就是求两对点之间 (s1,t1 和 s2,t2) 最短路的最长重合距离
分析
- 首先要有可以快速判断一条边是否在最短路上的方法, 可以用SPFA分别跑出以s1, t1, s2, t2四个点为起点的单源最短路, 判断时例如如果 d_s1[u] + d_t1[e.to] + e.dist == d_s1[t1], 那么边就在s1, t1的最短路上.
- 确定一些在最短路上的边后就可以用拓扑排序求出最长路. 注意把s2, t2反过来再做一次
- 拓扑排序时注意判断点有没有在最短路上
代码
#include
#include
#include
#include
#include
using namespace std;
const int INF = 0x3f3f3f3f;
const int maxn = 1500 + 10;
int d_s1[maxn], d_t1[maxn], d_s2[maxn], d_t2[maxn];
struct Edge {
int to, dist;
};
struct SPFA {
int n, m;
bool inq[maxn];
vector edges;
vector G[maxn];
void init(int n) {
this->n = n;
}
void AddEdge(int from, int to, int dist) {
edges.push_back((Edge){to, dist});
edges.push_back((Edge){from, dist});
m = edges.size();
G[from].push_back(m-2);
G[to].push_back(m-1);
}
void spfa(int *d, int s) {
queue Q;
memset(inq, 0, sizeof(inq));
for(int i = 1; i <= n; i++) d[i] = INF;
Q.push(s); inq[s] = 1; d[s] = 0;
while(!Q.empty()) {
int u = Q.front(); Q.pop();
inq[u] = 0;
for(int i = 0; i < G[u].size(); i++) {
Edge& e = edges[G[u][i]];
if(d[e.to] > d[u] + e.dist) {
d[e.to] = d[u] + e.dist;
if(!inq[e.to]) Q.push(e.to), inq[e.to] = 1;
}
}
}
}
}g1;
struct TOPO {
int n, m, d[maxn], d0[maxn];
vector edges;
vector G[maxn];
void init(int n) {
this->n = n;
memset(d0, 0, sizeof(d0));
edges.clear();
for(int u = 1; u <= n; u++) G[u].clear();
}
void AddEdge(int from, int to, int dist) {
edges.push_back((Edge){to, dist});
m = edges.size();
G[from].push_back(m-1);
d0[to]++;
}
int toposort() {
queue Q;
memset(d, 0, sizeof(d));
for(int u = 1; u <= n; u++) if(G[u].size() != 0 && !d0[u]) Q.push(u);
int max_d = 0;
while(!Q.empty()) {
int u = Q.front(); Q.pop();
max_d = max(max_d, d[u]);
for(int i = 0; i < G[u].size(); i++) {
Edge& e = edges[G[u][i]];
d[e.to] = max(d[e.to], d[u] + e.dist);
if(--d0[e.to] == 0) Q.push(e.to);
}
}
return max_d;
}
}g2;
int main()
{
int n, m, s1, t1, s2, t2;
scanf("%d %d %d %d %d %d", &n, &m, &s1, &t1, &s2, &t2);
g1.init(n);
for(int i = 0; i < m; i++) {
int from, to, dist;
scanf("%d %d %d", &from, &to, &dist);
g1.AddEdge(from, to, dist);
}
g1.spfa(d_s1, s1);
g1.spfa(d_t1, t1);
g1.spfa(d_s2, s2);
g1.spfa(d_t2, t2);
int ans = 0;
g2.init(n);
for(int u = 1; u <= n; u++)
for(int i = 0; i < g1.G[u].size(); i++) {
Edge& e = g1.edges[g1.G[u][i]];
if(d_s1[u] + d_t1[e.to] + e.dist == d_s1[t1] && d_s2[u] + d_t2[e.to] + e.dist == d_s2[t2])
g2.AddEdge(u, e.to, e.dist);
}
ans = max(ans, g2.toposort());
g2.init(n);
for(int u = 1; u <= n; u++)
for(int i = 0; i < g1.G[u].size(); i++) {
Edge& e = g1.edges[g1.G[u][i]];
if(d_s1[u] + d_t1[e.to] + e.dist == d_s1[t1] && d_s2[e.to] + d_t2[u] + e.dist == d_s2[t2])
g2.AddEdge(u, e.to, e.dist);
}
ans = max(ans, g2.toposort());
printf("%d\n", ans);
return 0;
}