BZOJ-1880-Elaxia的路线-SDOI2009-SPFA+拓扑排序

本文详细介绍了如何通过SPFA算法分别计算以四个点为起点的单源最短路,并利用拓扑排序确定最长重合路径。包括代码实现细节及注意事项。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

描述


就是求两对点之间 (s1,t1 和 s2,t2) 最短路的最长重合距离


分析

  • 首先要有可以快速判断一条边是否在最短路上的方法, 可以用SPFA分别跑出以s1, t1, s2, t2四个点为起点的单源最短路, 判断时例如如果 d_s1[u] + d_t1[e.to] + e.dist == d_s1[t1], 那么边就在s1, t1的最短路上.
  • 确定一些在最短路上的边后就可以用拓扑排序求出最长路. 注意把s2, t2反过来再做一次
  • 拓扑排序时注意判断点有没有在最短路上

代码

#include 
#include 
#include 
#include 
#include 
using namespace std;

const int INF = 0x3f3f3f3f;
const int maxn = 1500 + 10;
int d_s1[maxn], d_t1[maxn], d_s2[maxn], d_t2[maxn];

struct Edge {
	int to, dist;
};

struct SPFA {
	int n, m;
	bool inq[maxn];
	vector edges;
	vector G[maxn];
	
	void init(int n) {
		this->n = n;
	}
	
	void AddEdge(int from, int to, int dist) {
		edges.push_back((Edge){to, dist});
		edges.push_back((Edge){from, dist});
		m = edges.size();
		G[from].push_back(m-2);
		G[to].push_back(m-1);
	}
	
	void spfa(int *d, int s) {
		queue Q;
		memset(inq, 0, sizeof(inq));
		for(int i = 1; i <= n; i++) d[i] = INF;
		Q.push(s); inq[s] = 1; d[s] = 0;
		
		while(!Q.empty()) {
			int u = Q.front(); Q.pop();
			inq[u] = 0;
			for(int i = 0; i < G[u].size(); i++) {
				Edge& e = edges[G[u][i]];
				if(d[e.to] > d[u] + e.dist) {
					d[e.to] = d[u] + e.dist;
					if(!inq[e.to]) Q.push(e.to), inq[e.to] = 1;
				}
			}
		}
	}
}g1;

struct TOPO {
	int n, m, d[maxn], d0[maxn];
	vector edges;
	vector G[maxn];
	
	void init(int n) {
		this->n = n;
		memset(d0, 0, sizeof(d0));
		edges.clear();
		for(int u = 1; u <= n; u++) G[u].clear();
	}
	
	void AddEdge(int from, int to, int dist) {
		edges.push_back((Edge){to, dist});
		m = edges.size();
		G[from].push_back(m-1);
		d0[to]++;
	}
	
	int toposort() {
		queue Q;
		memset(d, 0, sizeof(d));
		for(int u = 1; u <= n; u++) if(G[u].size() != 0 && !d0[u]) Q.push(u);
		int max_d = 0;
		
		while(!Q.empty()) {
			int u = Q.front(); Q.pop();
			max_d = max(max_d, d[u]);
			for(int i = 0; i < G[u].size(); i++) {
				Edge& e = edges[G[u][i]];
				d[e.to] = max(d[e.to], d[u] + e.dist);
				if(--d0[e.to] == 0) Q.push(e.to);
			}
		}
		return max_d;
	}
}g2;

int main()
{
	int n, m, s1, t1, s2, t2;
	scanf("%d %d %d %d %d %d", &n, &m, &s1, &t1, &s2, &t2);
	g1.init(n);
	for(int i = 0; i < m; i++) {
		int from, to, dist;
		scanf("%d %d %d", &from, &to, &dist);
		g1.AddEdge(from, to, dist);
	}
	g1.spfa(d_s1, s1);
	g1.spfa(d_t1, t1);
	g1.spfa(d_s2, s2);
	g1.spfa(d_t2, t2);
	
	int ans = 0;
	g2.init(n);
	for(int u = 1; u <= n; u++)
		for(int i = 0; i < g1.G[u].size(); i++) {
			Edge& e = g1.edges[g1.G[u][i]];
			if(d_s1[u] + d_t1[e.to] + e.dist == d_s1[t1] && d_s2[u] + d_t2[e.to] + e.dist == d_s2[t2])
				g2.AddEdge(u, e.to, e.dist);
		}
	ans = max(ans, g2.toposort());
	g2.init(n);
	for(int u = 1; u <= n; u++)
		for(int i = 0; i < g1.G[u].size(); i++) {
			Edge& e = g1.edges[g1.G[u][i]];
			if(d_s1[u] + d_t1[e.to] + e.dist == d_s1[t1] && d_s2[e.to] + d_t2[u] + e.dist == d_s2[t2])
				g2.AddEdge(u, e.to, e.dist);
		}
	ans = max(ans, g2.toposort());
	printf("%d\n", ans);
	
	return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值