leetcode 279. 完全平方数

文章介绍了一种使用动态规划解决的问题,给定一个整数n,找到组成n的完全平方数的最少数量。通过构建dp数组,计算以每个整数的平方作为起点,逐步累加的最小完全平方数组合。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

给你一个整数 n ,返回 和为 n 的完全平方数的最少数量 。

完全平方数 是一个整数,其值等于另一个整数的平方;换句话说,其值等于一个整数自乘的积。例如,149 和 16 都是完全平方数,而 3 和 11 不是。

示例 1:

输入:n = 12
输出:3 
解释:12 = 4 + 4 + 4

示例 2:

输入:n = 13
输出:2
解释:13 = 4 + 9

  

class Solution {

    public int numSquares(int n) {

 //最大的容量

        int c=(int)Math.sqrt(n);

        int[]dp=new int[n+1];

        //初始化

        Arrays.fill(dp,Integer.MAX_VALUE);

        //初始化 0 0 的平方数也是0

        dp[0]=0;

        for (int i = 1; i <=c; i++) {

            //比当前的 平方数 要大的时候才能方

            for (int j = i*i; j <=n ; j++) {

                //1+当前重量-i的平方数 就是剩余的平方数 求最小值 最小的组合值

                dp[j]=Math.min(dp[j],1+dp[j-i*i]);

            }

        }

        if(dp[n]==Integer.MAX_VALUE){

            return 0;

        }

        return dp[n];

    }

}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值