Matlab 齐次线性方程组求解举例

Matlab 齐次线性方程组求解举例

齐次线性方程组有非零解的条件

定理
一个齐次线性方程组有非零解的充分且必 要条件是:它的系数矩阵的秩r小于它的未知量的 个数n。 推论1 含有n个未知量n个方程的齐次线性方程 组有非零解的充分且必要条件是:方程组的系数 行列式等于零。 推论2 若在一个齐次线性方程组中, 方程的个数m小于未知量的个数n,那 么这个方程组一定有非零解。

  • 齐次线性方程组只有零解的条件
  • 矩阵的秩= 未知量的个数
  • 系数矩阵列满秩

系数矩阵的列向量组线性无关满足以上三个条件中的一个就只有零解。

举例:


syms k;  %定义符号k
A = [1-k -2 4;
    2 3-k 1;
    1 1 1-k];
D = det(A);
M = factor(D);  %因式分解
M

输出:
在这里插入图片描述

从而得到当k= 0,k= 2,k=3时,原方程有非零解。

定义
齐次线性方程组的一组解向量

如果满足如下条件:
(1)这组解向量线性无关;
(2)方程组的任一解向量都可被该组解向量线性表出,那么,就称该组解向量是齐次线性方程组的一个基础解系。

举例2:

A = [1 1 -3 -1;
    3 -1 -3 4;
    1 5 -9 -8];
b = [1 4 0]';
B = [A b];
n = 4;
R_A = rank(A);
R_B = rank(B);
R_A;
R_B;
format rat;
if R_A == R_B &R_A==n
    X = A\b;
elseif R_A==R_B &R_A<n
    X = A\b;
    C = null(A,'r')     %求基础解系
else X = 'Equation has no solves'
end

在这里插入图片描述

在这里插入图片描述

例:

% 求解方程
A = [1 1 -3 -1;
    3 -1 -3 4;
    1 5 -9 -8];

b = [1 4 0]';
B = [A b];
format rat;  %结果以分数胡形式显示
C=rref(B);   %简化的行阶梯形矩阵(Gauss-Jordan 消元法)

在这里插入图片描述

模糊数学在工程技术、管理科学、金融工程等领域应用中的很多问题都可以用模糊方程和模糊线性系统来描述。 但是,实现模糊方程和模糊线性系统的求解十分困难,对求解方法的研究一直以来都是重点,也是难点。 无论从理论研究还是从实际应用的角度来说,对模糊方程和模糊线性系统的求解研究都具有重要意义。 本文针对传统方法求解模糊方程和模糊线性系统在模糊数运算、隶属函数解析表示、模糊解判定等方面存在的困难,借助模糊结构元理论,相应地提出了一套模糊方程和模糊线性系统的求解方法。首先,利用两个单调函数的自反单调变换构造了等式限定算子,推广了等式限定运算,处理了存在负模糊情况下关于乘法运算的不可逆问题。 并将等式限定运算思想应用到求解模糊线性方程中,给出了模糊解的结构元表示方法和解存在的充要条件。同时,推广了模糊线性方程,研究了更一般的双重模糊线性方程。此外,还研究了关于矩形复模糊数和圆楔形复模糊数线性方程的求解问题。 其次,定义了幂模糊数和幂模糊数方程,基于结构元方法研究了幂模糊数运算和幂模糊数方程的求解。同时,实现了一元二次模糊方程的求解,利用区间[-1,1]上的单调函数将一元二次模糊方程的求解问题转化为二元二次参数方程组求解问题,给出了二次模糊方程解存在的充要条件,并辅以数值例子。 最后,利用结构元技术提出了模糊线性系统的求解方法,给出了模糊解存在的充要条件,并辅以实例计算。由于该求解方法是借助[-1,1]上关于y轴对称的单调函数实现的,结果表明在解存在的判定上优于Embedding法。 同时,管理毕业论文www.yifanglunwen.com [-1,1]还研究了一类由模糊结构元线性生成的模糊线性系统,其求解特点是可转为经典线性系统,避免了参数的讨论。本文提出的模糊方程和模糊线性系统的结构元求解方法,极大地简化了模糊数运算的困难,实现了模糊解的判定和解析表达,为模糊数学基础理论问题的研究以及实际问题中的应用与推广奠定了基础。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值