【数据挖掘】信息增益的计算

本文由博主怪&分享,主要探讨信息论中的基本概念——熵和信息增益。熵是衡量系统不确定性的指标,而信息增益则描述了额外属性对系统不确定性减少的程度。通过实例解释了信息增益的计算方法,并提供了相关习题以加深理解。适合学习信息论和数据挖掘的读者阅读。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

🌵🌵🌵前言

✨你好啊,我是“ 怪& ”,是一名在校大学生哦。
🌍主页链接:怪&的个人博客主页
☀️博文主更方向为:课程学习知识、作业题解、期末备考。随着专业的深入会越来越广哦…一起期待。
❤️一个“不想让我曾没有做好的也成为你的遗憾”的博主。
💪很高兴与你相遇,一起加油!

一、预备知识

1、熵是什么

熵:信息量的数学期望,在信息论中衡量一个系统的不确定性。(越小越好)

2、信息增益是什么?

信息增益:当知道额外属性时,对整个系统的不确定性降了多少。(越大越好)

二、如何计算信息增益

例题如下:

在这里插入图片描述

三、习题

在这里插入图片描述
解答如下:在这里插入图片描述

❤️❤️❤️忙碌的敲代码也不要忘了浪漫鸭!

评论 9
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

怪&

感谢您的支持

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值