坐标系变换矩阵推导

本文详细推导了三维坐标系中的旋转变换公式,并具体阐述了如何从相机坐标系转换到世界坐标系,以及从世界坐标系转换到相机坐标系的过程,涉及中间坐标系{M}的引入和纯旋转和平移变换矩阵的计算。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、旋转变换公式推导和结论

  将源坐标系A绕原点O顺时针旋转θ角,得到目标坐标系B。已知P点在A中的坐标,求P点在B中的坐标,即:计算O点到P点的向量在B的X轴、Y轴的投影的长度。
在这里插入图片描述
在这里插入图片描述

二、相机坐标系 to 世界坐标系变换矩阵推导

  问题:计算相机坐标系{C}到世界坐标系{W}的变换矩阵。
  已知条件:Oc在{W}中的坐标,Xw轴、Yw轴、Zw轴的单位方向向量在{C}中的表示。已知P点在{C}中的坐标,求P点在{W}中的坐标,即求{C}到{W}的变换矩阵:引入中间坐标系{M},它的原点与{C}相同,它的X轴、Y轴、Z轴之方向与{W}相同;先求{C}到{M}的变换矩阵(纯旋转变换),再求{M}到{W}的变换矩阵(纯平移变换)。

### 如何通过坐标系变换矩阵计算角速度 在机器人学和三维图形编程领域,角速度通常用于描述刚体绕某一轴旋转的速度。当涉及到多个坐标系之间的转换时,可以通过齐次变换矩阵来表示这些关系,并从中提取角速度。 #### 齐次变换矩阵与旋转变换 齐次变换矩阵 \( T \in SE(3) \) 是一种常用的工具,用来表达两个坐标系之间的相对位置和方向的关系[^1]。它由一个旋转部分 \( R \in SO(3) \) 和平移向量组成: \[ T = \begin{bmatrix} R & t \\ 0^T & 1 \end{bmatrix}, \] 其中 \( R \) 表示旋转矩阵,\( t \) 表示平移矢量。 对于纯旋转运动而言,可以忽略平移分量并专注于旋转矩阵 \( R(t) \),其随时间变化可定义为: \[ R(t+\Delta t)=R(t)\exp(\hat{\omega}\Delta t), \] 这里 \( \hat{\omega} \) 是反对称形式的角速度矢量 \( \omega=[\omega_x,\omega_y,\omega_z]^T \)[^2]。 #### 计算方法 为了从旋转矩阵的变化率中求解角速度,考虑如下推导过程: 给定连续的时间依赖型旋转矩阵 \( R(t) \),满足正交性和行列式约束条件,则有微分方程表述: \[ \dot{R}(t) = [\Omega(t)]_\times R(t), \] 此处 \( [\cdot]_\times \) 定义了一个基于输入矢量构建对应的斜对称矩阵操作符;而 \( \Omega(t) \) 即为我们所寻找的空间固定框架下的瞬时角速度矢量[^3]。 具体实现上可通过数值差分近似得到离散时刻间的平均角速度估计值或者解析方式获得精确结果取决于实际应用场景需求以及数据获取精度等因素影响。 ```python import numpy as np def skew_symmetric(v): """Generate the skew-symmetric matrix of a vector.""" return np.array([[0, -v[2], v[1]], [v[2], 0, -v[0]], [-v[1], v[0], 0]]) def angular_velocity_from_rotation(R_prev, R_curr, dt): """ Calculate angular velocity from two consecutive rotation matrices. Parameters: R_prev (numpy.ndarray): Previous rotation matrix at time t-dt. R_curr (numpy.ndarray): Current rotation matrix at time t. dt (float): Time interval between measurements. Returns: omega (numpy.ndarray): Angular velocity vector. """ delta_R = np.dot(np.linalg.inv(R_prev), R_curr) theta = np.arccos((np.trace(delta_R)-1)/2.) if abs(theta)<1e-8: # Small angle approximation W_hat = (delta_R-np.eye(3))/dt/theta*skew_symmetric([0.,0.,theta]) else: W_hat = (delta_R-np.eye(3))/(2*np.sin(theta)) omega = np.array([-W_hat[1,2], W_hat[0,2], -W_hat[0,1]]) return omega/dt ``` 上述代码片段展示了如何依据前后两次测量所得旋转矩阵及其对应采样周期估算出当前时间段内的均值角速度。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

ygdd

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值