【YOLO源码解读】

本文深入探讨了目标检测的历程,从传统的计算机视觉技术如SIFT特征点、Haar特征和积分图,到两阶段检测方法如RCNN系列,再到一阶段检测的YOLO系列,详述YOLO网络参数及其演变,最后提及了无锚点方法的新兴趋势。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

传统CV

主要是关于 mid-level 的 cv 技法,包括但不限于:

  1. SIFT 特征点:(这个最重要)
    a. 图像平滑(高斯核卷积)
    b. 光照不变形(图像颜色变化)
    c. Image pyramid, DoG (高斯核卷积)
    d. Harris 角点 (泰勒展开)
    e. 极值点(线性插值)
    f. 特征向量的生成(旋转不变形)
  2. 其他相关特征点, 包括但不限于: HoG, SURF, ORB, FAST 等
  3. Haar 特征,Integral Image(积分图)
  4. 传统 ML 方法:
    SVM,Decision Tree, Logistic Regression, Linear Regression, Neural Network, Adaboost

Schedule

在这里插入图片描述

I. Two Stage Detection

A. RCNN: NMS Series
B. Fast RCNN: ROI Series
C. Faster RCNN: RPN + Anchor
D. Some Resources

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小秋slam实战

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值