小秋SLAM入门实战SLAM所有文章汇总

小秋SLAM入门实战视频教程学习顺序
SLAM算法中的缓冲区和队列用途和用法
结合卡尔曼滤波器和运动方程观测方程谈谈状态估计
如何通俗的理解基于滤波器的优化和基于预积分的优化
【如何利用扩展卡尔曼滤波解决跟踪毫米波雷达目标】
激光雷达数据作为观测讲解卡尔曼滤波器
【跟踪算法汇总】
如何理解对数差异、比对数几率
常见的状态转移矩阵和对应的运动模型
几种基本的高斯分布数学运算,加法、乘法、缩放和卷积及运用场景
【什么是高斯分布?还有什么分布?他们的用途是什么?】
【障碍物跟踪和多传感器融合定位】
从代码入手理解卡尔曼滤波器的原理之使用Eigen实现二维卡尔曼滤波器(七)
从代码入手理解卡尔曼滤波器的原理之有控制输入的二维卡尔曼滤波器(六)
从代码入手理解卡尔曼滤波器的原理之没有控制输入的二维卡尔曼滤波器(五)
从代码入手理解卡尔曼滤波器的原理之引入状态转换模型(四)
从代码入手理解卡尔曼滤波器的原理之校正步骤(三)
从代码入手理解卡尔曼滤波器的原理之预测步骤(二)
从代码入手理解卡尔曼滤波器的原理之定义卡尔曼滤波器的关键参数(一)
评估两个位置姿态之间的差异
位姿变换矩阵从Sophus库的SE3f类型转换为OpenCV库的Mat类型
Eigen 类型三维点的世界坐标转换为 OpenCV Mat 类型
【ORB3词袋模型加载提速】
使用FAST方法检测特征点,然后计算这些特征点的ORB描述子,并使用暴力匹配方法找到匹配的特征点
读取摄像机的内参和畸变系数并对畸变图像进行去畸变
本质矩阵(Essential Matrix)E进行分解的过程
Eigen::Matrix 转换 cv::Mat
X、Y、Z轴上旋转角度的Eigen::Vector3d对象转换为一个旋转矩阵
四元数转换为一个旋转矩阵
将一个3x3的OpenCV旋转矩阵转换为Eigen的Euler角
如何理解激光SLAM算法Cartographer中的分支定界(Branch and Bound)算法
如何安装和使用 Eigen
安装 imu_utils
realsense 官方 imu 标定脚本
从 robot 坐标系到 orb2 坐标系的变换
ORB_SLAM3算法中的模板特化函数用法
ORB_SLAM3中如何创建一个 Pinhole(小孔)相机模型的对象
ORB_SLAM3算法中是如何管理相机类型和参数的?
ORB_SLAM3算法中是如何对图像进行去畸变的?
【python创建三维坐标点并显示】
【创建一个螺旋状的相机轨迹并可视化该轨迹以及每个点的姿态】
【创建相机位姿并显示】
tcw = -Rcw * twc
【特征点】
【逐函数详细讲解ORB_SLAM2算法和C++代码|Frame.h|1-7】
【逐函数详细讲解ORB_SLAM2算法和C++代码|FrameDrawer|1-8】
【逐函数详细讲解ORB_SLAM2算法和C++代码|Initializer|1-9】
【逐函数详细讲解ORB_SLAM2算法和C++代码|KeyFrame|1-10】
【逐函数详细讲解ORB_SLAM2算法和C++代码|KeyFrameDatabase|1-11】
【逐函数详细讲解ORB_SLAM2算法和C++代码|LocalMapping|1-12】
【逐函数详细讲解ORB_SLAM2算法和C++代码|LoopClosing|1-13】
【逐函数详细讲解ORB_SLAM2算法和C++代码|Map|1-14】
【逐函数详细讲解ORB_SLAM2算法和C++代码|MapDrawer|1-15】
【逐函数详细讲解ORB_SLAM2算法和C++代码|MapPoint|1-16】
【逐函数详细讲解ORB_SLAM2算法和C++代码|ORBVocabulary|1-17】
【逐函数详细讲解ORB_SLAM2算法和C++代码|ORBextractor|1-19】
【逐函数详细讲解ORB_SLAM2算法和C++代码|ORBmatcher|1-20】
【逐函数详细讲解ORB_SLAM2算法和C++代码|Optimizer|1-21】
【逐函数详细讲解ORB_SLAM2算法和C++代码|PnPsolver|1-22】
【逐函数详细讲解ORB_SLAM2算法和C++代码|Sim3Solver|1-23】
【逐函数详细讲解ORB_SLAM2算法和C++代码|System|1-24】
【逐函数详细讲解ORB_SLAM2算法和C++代码|Tracking|1-25】
【逐函数详细讲解ORB_SLAM2算法和C++代码|Tracking|1-25】
【逐函数详细讲解ORB_SLAM2算法和C++代码|Viewer|1-26】
ORB_SLAM2算法是如何通过函数LoadImages加载图像的?
逐函数详细讲解ORB_SLAM2算法和C++语法|System|2-2
激光雷达数据含义和激光SLAM算法匹配原理
【ORB_SLAM2 CMakeLists.txt 文件详解】
TrackStereo | 1
System::TrackStereo()
System::TrackStereo
Tracking::GrabImageStereo
Frame::Frame(1)
ORB_SLAM2算法如何提取图像的ORB特征点?
如何理解ORB_SLAM2算法中一个特征点在y方向的位置是以金字塔尺度为半径的多行中?
ORB_SLAM2算法中是如何计算特征点的描述子的?
ORB_SLAM2算法中如何计算右目和左目两个特征点的是否匹配?
ORB_SLAM2算法中特征点是如何精确匹配的?
Ubuntu 16.04、18.04、20.04系统下运行ORB_SLAM3
【相机坐标系和机器人坐标系之间的旋转矩阵】
逐函数详细讲解ORB_SLAM2算法和C++代码|System.h
逐函数详细讲解ORB_SLAM2算法和C++代码|System.cc|1-2
逐函数详细讲解ORB_SLAM2算法和C++代码|System.cc|1-3
函数详细讲解ORB_SLAM2算法和C++代码|Tracking.h|1-4
逐函数详细讲解ORB_SLAM2算法和C++代码|Tracking.cpp|StereoInitialization|1-5
逐函数详细讲解ORB_SLAM2算法和C++代码|CheckReplacedInLastFrame
逐函数详细讲解ORB_SLAM2算法和C++代码|TrackReferenceKeyFrame
逐函数详细讲解ORB_SLAM2算法和C++代码|Tracking.cpp|UpdateLastFrame|1-6
【orb3中IMU中值积分代码和理论讲解】
ORB_SLAM2算法中g2o图优化的用法
【 ceres-solver 安装】
ORB_SLAM3代码中IMU数据使用流程
编译usb_cam报错
【imDepth.convertTo(imDepth,CV_32F,mDepthMapFactor)】
【Frame::PosInGrid】
【Frame::ComputeStereoFromRGBD】
【ORBmatcher::DescriptorDistance】
【MapPoint::UpdateNormalAndDepth】
【KeyFrame::SetPose】
Tcr = mCurrentFrame.mTcw*mCurrentFrame.mpReferenceKF->GetPoseInverse()
【Tracking::UpdateLocalKeyFrames】
【MapPoint::AddObservation】
【MapPoint::SetBadFlag】
GVINS安装环境配置和测试
【t265标定】
【g2o】指定路径安装和使用
ORB_SLAM3运行性能分析Valgrind、callgrind、gprof2dot
【VINS-Mono】
【Ubuntu 20.04 OpenVINS】
【Ubuntu 20.04】编译运行 VINS-Course
四元数和旋转矩阵两种方式对旋转向量进行更新结果对比
通过加速度计和陀螺仪解算姿态
「VINS-Course」processIMU、propagate、midPointIntegration
如何快速理解IMU积分、预积分、误差、方差
Estimator::relativePose
【VINS-Mono】
「零基础从零开始写VO视觉里程计」如何求解线性方程 Hdx=b?(7-)
「零基础从零开始写VO视觉里程计」高斯牛顿曲线拟合 gaussNewton.cpp(7-1)
「零基础从零开始写VO视觉里程计」ceres曲线拟合 ceres_curve_fitting.cpp(7-2)
「零基础从零开始写VO视觉里程计」曲线拟合g2oCurveFitting.cpp(7-3)
「零基础从零开始写VO视觉里程计」统计学、概率论、最小二乘、图优化(7-4)
「零基础从零开始写VO视觉里程计」G2O基础知识讲解(7-5)
【Pangolin】
Could NOT find CSPARSE (missing: CSPARSE_INCLUDE_DIR CSPARSE_LIBRARY)
【Ubuntu 20.04】 安装g2o和使用教程
【从零开始学习SLAM】两帧之间的光流视觉里程计
【VINS-Mono】Estimator::initialStructure
IMU积分、预积分、误差
图像数据输入流程和相机模型
航迹推演通过左右轮速度得到机器人前进线速度和角速度
GNSS、RTK、基站、移动站
【TUM公开数据集RGBD-Benchmark工具evaluate_ate.py参数用法原理解读】
【TUM公开数据集RGBD-Benchmark工具evaluate_rpe.py参数用法原理解读】
【轮式里程计】
Ubuntu20.04系统编译运行VINS-Mono、VINS-Fusion
dre_slam
se2clam
IMU的坐标系和初始化
Tracking::TrackLocalMap()
从零开始学习SLAM
相机、雷达、ROS坐标系之间的关系
【自动驾驶多传感器融合+多算法融合】
【相机坐标系、ORB_SLAM2坐标系】
自动驾驶专业名词扫盲
IMU激光雷达联合标定
【RTAB-Map】
Ubuntu系统下安装Pangolin
gtsam
图象的感光原件、成象原理、相机的相关坐标系
gnome-terminal launch VINS-Fusion
「Ubuntu&ROS」Ubuntu系统下安装李代数库Sophus教程
【机器人坐标系第一讲】
【从零开始学习SLAM】将坐标系变换关系发布到 topic tf
ORB_SLAM2|3算法中是如何计算图像去畸变后的边界的?
ORB_SLAM2|3算法中是如何提升特征点匹配效率的?
bool Frame::PosInGrid(const cv::KeyPoint &kp, int &posX, int &posY)
【ORB_SLAM2】SetPose、UpdatePoseMatrices
搭建VINS-Mono编译运行环境
【逐函数讲解ORB_SLAM3源码】初始化和整体执行流程
【逐函数讲解ORB_SLAM3源码】获取普通帧率、关键帧、IMU数据
【逐函数讲解ORB_SLAM3源码】IMU的欧拉积分中值积分
【ORB_SLAM3源码解读】手撕IMU预积分公式
【ORB_SLAM2源码解读】EuRoC双目数据集跑通ORB_SLAM2
ORB_SLAM2和ORB_SLAM3算法中双目是如何加载Euroc数据集图像的?
【ORB_SLAM2源码解读】System::TrackRGBD Tracking::GrabImageRGBD Frame::Frame Track
【逐函数讲解ORB_SLAM2源码】4.计算umax
【逐函数讲解ORB_SLAM2源码】5.图像金字塔
【逐函数讲解ORB_SLAM2源码】6.图像金字塔提取特征点
【逐函数讲解ORB_SLAM2源码】7.四叉树初始节点
【逐函数讲解ORB_SLAM2源码】8.四叉树节点分裂
【逐函数讲解ORB_SLAM2源码】9.四叉树实现特征点均匀化
【逐函数讲解ORB_SLAM2源码】10.特征点的几何中心和灰度质心
【逐函数讲解ORB_SLAM2源码】11.具有旋转不变性的描述子
【ORB_SLAM2源码解读】TUM RGBD 数据集跑通ORB_SLAM2
【逐函数讲解ORB_SLAM2源码】3.ORB_SLAM2系统初始化
【ORB_SLAM2源码解读】MapPoint SetWorldPos、GetWorldPos、GetNormal、mNormalVector
【ORB_SLAM2源码解读】TUM、EuRoC单目数据集跑通ORB_SLAM2
【ORB_SLAM2源码解读】Tracking::StereoInitialization() rgbd_tum 生成世界坐标系下的三维点完成双目和RGBD初始化操作
【ORB_SLAM2源码解读】Ubuntu 20.04系统下编译ORB_SLAM2
【从零开始学习SLAM】Ubuntu 20.04系统下编译运行视觉SLAM十四讲代码
【ORB_SLAM2源码解读】分析ORB_SLAM2 RGBD 第0帧是怎么计算位置姿态的
【ORB_SLAM2源码解读】分析ORB_SLAM2 RGBD 第1帧是怎么计算位置姿态的
Ubuntu系统下如何搭建深度学习和SLAM开发环境
【ORB_SLAM3源码解读】IMU基础介绍、IMU姿态、速度、位置解算以及误差方程、坐标系
【ORB_SLAM3源码解读】原理解读代码实战教程
【ORB_SLAM2源码解读】Intel RealSense Depth Camera D455跑通 orb_slam2_ros
【从零开始学习SLAM】将坐标系变换关系发布到话题 tf_static
【从零开始学习SLAM】官方tf教程小海龟跟随程序
【从零开始学习SLAM】分解ros小海龟跟随代码
【从零开始学习SLAM】获取小海龟的位姿发布坐标变换
【从零开始学习SLAM】获取两只小海龟坐标系之间的变换矩阵实现小海龟跟随效果
【从零开始学习SLAM】ros navigation AMCL move_base配置文件 A-Star Dijkstra 算法原理
【ORB_SLAM2源码解读】LocalMapping线程执行流程
【ORB_SLAM2源码解读】ORB_SLAM2::LoopClosing::Run
【从零开始学习SLAM】编译运行LDSO代码
「从零开始手写VIO」第七讲学习笔记
「从零开始手写VIO」第六讲学习笔记
「从零开始手写VIO」第五讲学习笔记
「从零开始手写VIO」第四章学习笔记
「ORB_SLAM2源码解读」之函数ORBmatcher::SearchForInitialization()
【从零开始学习SLAM】像素坐标系、图像坐标系 、相机归一化坐标系、相机坐标系、世界坐标系
【ORB_SLAM2源码解读】标定相机camera和惯导IMU内参和外参数
【TUM公开数据集RGBD-Benchmark工具associate.py参数用法原理解读】
【从零开始学习SLAM】通过监听坐标变换实现点的坐标变换
【从零开始学习SLAM】TurtleBot3硬件结构 多机通信 地图生成和保存 键盘控制 在RVIZ中显示 导航
【ORB_SLAM2源码解读】从文件或终端读写yaml和txt文件
【ORB-SLAM2源码解读】论文公式
【Ubuntu20.04系统下evo安装和使用教程】
【ORB_SLAM3源码解读】Ubuntu 16.04、18.04、20.04系统下编译ORB_SLAM3
SLAM算法中的缓冲区和队列用途和用法
【ORB_SLAM2源码解读】Intel RealSense D435i 实时跑ORB_SLAM2单目 双目 RGBD
【从零开始学习SLAM】两帧之间的特征点视觉里程计并用g2o优化
【从零开始学习SLAM】VIZ Pangolin 可视化
【从零开始学习SLAM】BA问题用g2o求解重新投影误差优化相机位姿和路标点
「零基础从零开始写VO视觉里程计」匹配的3D空间点求位姿并用g2o优化
【ORB_SLAM2源码解读】Intel RealSense Depth Camera D435i 双目 RGBD 小觅双目 自制双目 跑通 ORB_SLAM2 RTAB-Map
【从零开始学习SLAM】两张图像如何拼接成点云
【从零开始学习SLAM】2D-2D 两张图像匹配的特征点求解位置姿态
【从零开始学习SLAM】三角化方法求3D空间点的深度
「零基础从零开始写VO视觉里程计」3D空间点和2D特征点求位姿并用高斯牛顿和G2O优化
【从零开始学习SLAM】g2o_viewer
【从零开始学习SLAM】扫地机器人工作原理 传感器原理 结构 工作流程 路径规划技术
【ORB_SLAM2源码解读】Intel RealSense Depth Camera D435i 跑通 RTAB-Map
RealSense RGBD 深度摄像头 D435i 、D455 硬件结构及各个组件原理详解
【从零开始学习SLAM】编译运行MultiCol-SLAM(multi-fisheye camera SLAM system)代码
【从零开始学习SLAM】机器人仿真 导航仿真
【从零开始学习SLAM】MCPTAM MultiCol-SLAM 安装以及两者相机标定文件参数之间的转换
【从零开始学习SLAM】坐标变换 Eigen Sophus 旋转矩阵 轴角 旋转向量 欧拉角 四元数 位姿变换

一张图看懂零维到十维空间
为什么一流成功人士的闹钟都定在早晨5:57
读懂一篇学术论文的几个关键点

【ROS tf2】发布静态坐标系
【Point Cloud ROS】用一张彩色图像和深度图像生成点云图像
【Point Cloud ROS】两张点云图像之间的位姿变换
【Point Cloud ROS】对点云进行位姿态变换
【逐函数讲解ORB_SLAM2源码】2.图像去畸变

### 关于SLAM技术的入门教程与实战项目 #### 了解基础知识 对于希望进入SLAM领域的新手来说,理解基本概念至关重要。这包括但不限于机器人学基础、线性代数以及概率论等内容。这些知识能够帮助更好地掌握后续更复杂的理论和技术。 #### 推荐的学习资源 - **书籍推荐** - *《Probabilistic Robotics》*:这本书由Sebastian Thrun等人编写,涵盖了大量有关移动机器人感知和决策方面的内容,特别是第8章至第10章深入探讨了不同类型的SLAM方法及其背后的数学原理[^1]。 - **在线课程** - Coursera上的“Robotics: Estimation and Learning”,此系列课程提供了从简单到复杂的各种主题讲解,非常适合初学者逐步建立扎实的知识体系。 - edX平台提供的“Introduction to Autonomous Mobile Robots”,它不仅介绍了自主移动机器人的工作方式,还涉及到了如何利用传感器数据来进行有效的环境建模。 #### 开源框架实践 参与开源社区可以极大地加速个人技能的成长速度。以下是几个流行的用于实验和发展自己想法的地方: - **ROS (Robot Operating System)** 是最广泛使用的开发工具之一,在这里可以通过安装各种插件轻松搭建起完整的SLAM系统并测试效果。官方文档中有详细的指南说明怎样配置硬件连接软件包以启动视觉或激光版本的服务[^2]。 - **GMapping 和 Hector_SLAM** 都是在ROS环境下运行良好的解决方案,前者基于粒子滤波器实现高效的地图创建;后者则专注于处理高频率更新场景下的实时性能优化问题。两者都附带丰富的案例研究材料供参考学习。 #### 动手做项目 实际操作总是最好的老师。可以从简单的室内环境中开始尝试构建小型无人车或者无人机平台,并为其配备必要的传感装置如摄像头、IMU惯性测量单元等设备采集周围信息。接着按照上述提到的方法一步步完成整个流程直至最终形成稳定可靠的导航能力为止。 ```python import rospy from sensor_msgs.msg import LaserScan def scan_callback(msg): print(f"Received {len(msg.ranges)} range measurements.") rospy.init_node('laser_listener') sub = rospy.Subscriber('/scan', LaserScan, scan_callback) rospy.spin() ``` 这段Python代码展示了订阅来自激光测距仪的消息并将接收到的距离读数打印出来的过程。这是验证设置是否正常工作的第一步。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小秋slam实战

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值