目录 原型网络(Prototypical Networks) 1. 主要思想 2. 模型 3. 算法 4. 少样本和零样本学习 5. 实验 (1) 数据集Omniglot上少样本分类 (2) 数据集miniImageNet上少样本分类 (3) 数据集CUB上零样本分类 原型网络(Prototypical Networks) 1. 主要思想 把样本空间投影(嵌入到一个低维空间),利用样本在低维空间的相似度做分类。类似k-means聚类算法,在低维空间中找到每个分类的聚类中心。 用距离函数测新的样本的分类。 2. 模型 样本: K个分类,每个类 N 个样本。 把N分成 NS 和 NQ (N=NS+NQ)。 对应的样本集合分别记为 Sk 支持集( support examples)和 Qk 查询集(query examples)。 低维映射: 神经网络函数fφ(x)把样本x映射到嵌入空间。 每个类的聚类中心(原型):