原型网络2017:《Prototypical Networks for Few-shot Learning》论文笔记

原型网络(Prototypical Networks)

1. 主要思想

  把样本空间投影(嵌入到一个低维空间),利用样本在低维空间的相似度做分类。类似k-means聚类算法,在低维空间中找到每个分类的聚类中心。 用距离函数测新的样本的分类。

2. 模型

在这里插入图片描述

样本: K个分类,每个类 N 个样本。
   把N分成 NS 和 NQN=NS+NQ)。
   对应的样本集合分别记为 Sk 支持集( support examples)和 Qk 查询集(query examples)。
在这里插入图片描述

低维映射: 神经网络函数fφ(x)把样本x映射到嵌入空间。
在这里插入图片描述

每个类的聚类中心(原型):

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值