《Stable Diffusion web UI 从Civitai添加更多模型》

本文介绍了如何使用StableDiffusion的CivitaiHelper扩展来便捷地下载和安装多个常用的主模型和Lora模型,包括Deliberate、RealisticVisionV2.0、DreamShaper等,以及MoXin、hanfu等Lora模型。通过安装扩展,填写模型URL,选择版本并下载,用户可以更轻松地管理所需模型以进行图像生成。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

我们在使用Stable Diffusion需要很多模型,前面已经介绍过如何下载一个模型,那现在我们想要更多模型用前面方法就太麻烦了,如果知道常用模型的地址,那我们直接从C站把很多模型下过来,需要什么就可以直接选择。

  首先主要用的模型是:

(1)checkpoint 主模型——(我们用来生成各种风格图像的主模型,也就是基础画风,每张图片的生成都必须选择一个主模型,Dreambooth 是训练checkpoint 的两种方式之一)

常用主模型

Deliberate - https://civitai.com/models/4823/deliberate

Realistic Vision V2.0 - https://civitai.com/models/4201/realistic-vision-v20

DreamShaper - https://civitai.com/models/4384/dreamshaper

MeinaMix - https://civitai.com/models/7240/meinamix

(2)Lora 小模型——(对大模型进行微小的更改)

比较火的lora 模型

MoXin - https://civitai.com/models/12597/moxin

hanfu - https://civitai.com/models/15365/hanfu

Lucy (Cyberpunk Edgerunners) LoRA - 

### 关于Stable Diffusion WebUI中的绘世模型及相关资源 在 Stable Diffusion WebUI 中,用户可以通过多种方式获取和加载不同的模型以及相关资源来实现特定的艺术风格效果。对于提到的“绘世”模型或者类似的资源,可以按照以下方法查找和配置: #### 获取绘世模型或其他艺术风格模型 1. **访问模型仓库** 用户可以从多个开源平台下载预训练好的模型文件(通常为 `.ckpt` 或 `.safetensors` 格式)。这些模型可能已经包含了类似于“绘世”的艺术风格特性[^1]。 2. **推荐站点** 常见的模型分享网站包括 CivitAI 和 Hugging Face Model Hub。通过搜索关键词如 “Huishshi Style” 或者其他相近的艺术风格名称,能够找到适合的模型文件[^2]。 3. **安装与加载模型** 下载完成后,需将模型放置到 Stable Diffusion WebUI 的指定目录下,默认路径通常是 `models/Stable-diffusion/` 文件夹内。之后,在界面中选择对应的模型即可生效。 #### 配置WebUI环境以支持新模型运行 为了确保新增加的绘世模型能正常工作,建议遵循如下操作流程调整软件设置: - 完全退出当前正在执行的服务进程。 - 使用命令行脚本重新拉取最新版本代码并更新依赖项,例如利用官方提供的 shell 脚本来完成初始化部署: ```bash wget -q https://raw.githubusercontent.com/AUTOMATIC1111/stable-diffusion-webui/master/webui.sh && chmod +x webui.sh && ./webui.sh ``` 上述指令会自动处理必要的组件同步问题。 另外需要注意的是,当修改了核心参数或是替换了不同类型的扩散算法时,简单点击界面上的“Apply & Restart”选项未必可靠;因此更稳妥的办法就是依照指引彻底终止程序后再手动开启一次新的实例化过程。 ### 提供一段Python辅助代码用于批量检测本地可用模型列表 如果希望快速了解哪些自定义样式已经被成功导入,则可借助下面的小工具扫描目标存储区域内的有效条目: ```python import os def list_sd_models(model_dir='models/Stable-diffusion'): """List all available stable diffusion models.""" files = [f for f in os.listdir(model_dir) if f.endswith('.ckpt') or f.endswith('.safetensors')] return sorted(files) if __name__ == "__main__": models = list_sd_models() print("Available Models:") for idx, m in enumerate(models, start=1): print(f"{idx}. {m}") ``` 此函数可以帮助开发者直观掌握现有库存状况以便进一步挑选适用方案。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值