一、基本概念
在实际中,常常要处理由实验或测量所得到的一些离散数据。插值与拟合方法就是要通过这些数据去确定某一类已知函数的参数或寻求某个近似函数,使所得到的近似函数与已知数据有较高的拟合精度。
如果要求这个近似函数(曲线或曲面)经过所已知的所有数据点,则称此类问题为插值问题。 (不需要函数表达式)
如果不要求近似函数通过所有数据点,而是要求它能较好地反映数据变化规律的近似函数的方法称为数据拟合。(必须有函数表达式)
近似函数不一定(曲线或曲面)通过所有的数据点。
二、插值与拟合的区别和联系
1、联系
都是根据实际中一组已知数据来构造一个能够反映数据变化规律的近似函数的方法。
2、区别
插值问题不一定得到近似函数的表达形式,仅通过插值方法找到未知点对应的值。数据拟合要求得到一个具体的近似函数的表达式。
三、插值的使用及求解
3.1 引言
当数据量不够,需要补充,且认定已有数据可信时,通常利用函数插值方法。
实际问题当中碰到的函数 f (x) 是各种各样的,有的表达式很复杂,有的甚至给不出数学的式子,只提供了一些离散数据,譬如,某些点上的函数值和导数值。
3.2 插值方法
选用不同类型的插值函数,逼近的效果就不同,一般有:
拉格朗日插值(lagrange插值)
分段线性插值
Hermite插值
三次样条插值
四、拟合的使用及求解
4.1 引言
对于情况较复杂的实际问题(因素不易化简,作用机理不详)可直接使用数据组建模型,寻找简单的因果变量之间的数量关系, 从而对未知的情形作预报。这样组建的模型为拟合模型。拟合模型的组建主要是处理好观测数据的误差,使用数学表达式从数量上近似因果变量之间的关系。拟合模型的组建是通过对有关变量的观测数据的观察、分析和选择恰当的数学表达方式得到的。
4.2 拟合模型的分类
4.2.1 直线拟合
4.2.2 曲线拟合
曲 线 拟 合 问 题 的 提 法
已知一组(二维)数据,即平面上 n个点(xi,yi) i=1,…,n, 寻求一个函数(曲线)y=f(x), 使 f(x) 在某种准则下与所有数据点最为接近,即曲线拟合得最好.
曲线拟合问题最常用的解法——线性最小二乘法的基本思路
4.2.3 观察数据修匀
对于已给一批实测数据,由于实测方法、实验环境等一些外界因素的影响,不可避免地会产生随机干扰和误差。我们自然希望根据数据分布的总趋势去剔除观察数据中的偶然误差,这就是所谓的数据修匀(或称数据平滑)问题。
5.扩展
————————————————
版权声明:本文为CSDN博主「MAVID_」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。
原文链接:https://blog.csdn.net/MAVID_/article/details/131366832