为综合考虑目标检测和目标分割的结果,会将检测框和掩码轮廓综合考虑进行逻辑判断,需要判断目标框与掩码是否相交。本文对目标框与轮廓是否相交、相交面积对比、输出相交面积最大的目标框索引等功能进行实现,并对实现过程模块化前后代码进行展示,以及添加相应效果帮助大家理解和使用。最后把功能模块化,方便复用和调用。
模块化前
功能实现步骤
步骤1:读取图像,对图像进行二值化,并找出图像中的所有轮廓。
步骤2:判断轮廓大小,找出最大轮廓。
步骤3:定义目标框,格式(x1, y2, x2, y2),其中(x1, y1)是左上角的坐标,(x2,y2)是右下角坐标。
步骤4:把每个目标框的掩码画出来,中间区域填充。
步骤5:判断轮廓掩码与目标框掩码是否相交。
步骤6:若相交,则计算相交部分的轮廓和面积。
步骤7:判断相交面积与上一个相交面积的大小,保存最大面积和最大面积的目标框索引。
步骤8:若有多个目标框,循环步骤4、步骤5和步骤6。
步骤9:输出最大面积和最大面积的目标框索引。
代码示例
代码
import cv2
import numpy as np
# 读取图像
image = cv2.imread('image.jpg')
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
# 二值化图像以获取轮廓
_, thresh = cv2.threshold(gray, 127, 255, cv2.THRESH_BINARY)
# 查找轮廓
contours, _ = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
# 获取最大轮廓
if contours:
max_contour = max(contours, key=cv2.contourArea)
else:
print("No contours found in the image.")
exit()
# 定义目标框列表(矩形框的左上角和右下角坐标)
# 定义目标框列表
bounding_boxes = [
(571, 576, 902, 1017), # 示例目标框1
(527, 317, 713, 395),
(146, 211, 226, 359),
(764, 77