【Python】nn.Conv1、2、3d()函数详解和示例

前言

在深度学习中,‌卷积神经网络(‌Convolutional Neural Networks, CNNs)‌是一种非常强大的模型,‌广泛应用于图像识别、‌自然语言处理、‌视频分析等领域。‌PyTorch 提供了 nn.Conv1d、‌nn.Conv2d 和 nn.Conv3d 三个类,‌分别用于处理一维、‌二维和三维数据的卷积操作。‌本文将详细介绍这三个类的函数原型、‌原理、‌作用以及示例。‌

函数原型

nn.Conv1d

torch.nn.Conv1d(in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1, bias=True, padding_mode='zeros')
参数说明:
in_channels: 输入信号的通道数。‌
out_channels: 卷积产生的通道数。‌
kernel_size: 卷积核的大小。‌
stride: 卷积步长。‌
padding: 输入的每一条边补充0的层数。‌
dilation: 卷积核元素之间的间距。‌
groups: 从输入通道到输出通道的阻塞连接数。‌
bias: 是否添加偏置。‌
padding_mode: 填充模式,‌默认为'zeros'。‌

nn.Conv2d

torch.nn.Conv2d(in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1, bias=True, padding_mode
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

木彳

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值