【字符检测DBNet】《Real-time scene Text Detection with Differentiable Binarization》

论文团队:华中科技大学(白翔)

论文链接:https://arxiv.org/pdf/1911.08947.pdf

工程链接:https://github.com/MhLiao/DB

该算法的特点就是:后处理速度快,与PANNet相比,可以节省差不多一半的时间(在本人台式机cpu运行);


目录

1.算法的整体框架

2.可微二值(differentiable binarization)

3.自适应阈值(Adaptive threshold)(略)

4.可变形卷积(Deformable convolution)

5.标签的产生(Lable generation)

6.后处理

7.Experiments

8.Limitation

9.Conclusion



1.算法的整体框架

主要三个步骤:首先:图像输入特征提取主干,提取特征;

                          其次: 特征金字塔上采样到相同的尺寸,并进行特征级联到特征F;

                          然后:特征F用于预测概率图(probability map P)和阈值图(threshold map T);

                          最后:通过P和F计算近似二值图(approximate binary map B^)

论文算法主要包括了以下几部分:

2.可微二值(differentiable binarization)

标准二值处理:

一般使用分割网络(segmentation network)产生的概率图(probability map P),将P转化为一个二值图P,当像素为1的时候,认定其为有效的文本区域,同时二值处理过程:

i和j代表了坐标点的坐标,t是预定义的阈值;

但是标准的二值处理是不可微的,这样分割网络不可以在训练过程中优化。所以作者提出了可微二值:

 

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

猫猫与橙子

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值