一文带你看透 kd 树的 “魔法” 世界

引言

在数据结构与算法的广袤世界里,kd 树(k-dimensional tree)作为一种高效处理高维数据的数据结构,犹如一颗璀璨的明珠,散发着独特的光芒。它在众多领域,如计算机图形学、地理信息系统、数据挖掘和机器学习等,都发挥着不可或缺的作用。本文将深入探讨 kd 树的奥秘,从基本概念到构建过程,从应用场景到构建注意事项,为你全方位解读 kd 树。

在这里插入图片描述

一、kd 树的基本概念

kd 树,即 k 维树,是一种用于对 k 维空间中的数据点进行组织和索引的数据结构。这里的 “k” 代表数据的维度,它可以是二维、三维,甚至更高维度。kd 树本质上是二叉搜索树在高维空间的扩展,通过递归地将 k 维空间划分为多个子空间,实现对数据点的高效存储和检索。

想象一下,我们生活在一个二维平面世界中,有许多散布的点。kd 树就像是一个聪明的组织者,它能将这些点按照一定的规则进行划分,使得我们在查找某个点或者与它相近的点时,能够快速定位,而不是盲目地在整个平面中搜索。

在这里插入图片描述

### 红黑概念 红黑是一种特殊的二叉搜索,具有特定的颜色属性来保持的近似平衡状态。这种特性使得红黑能够在插入、删除和查找操作上提供较好的时间复杂度[^1]。 #### 性质描述 每棵红黑都遵循以下五条基本性质: - 每个节点要么是红色,要么是黑色。 - 根节点总是黑色。 - 所有叶子(NIL节点)都是黑色。(注意这里的叶子指的是外部节点) - 如果一个内部节点是红色,则它的两个孩子节点必须是黑色。(即不存在连续两条红线相连的情况) - 对于任意给定的非叶节点,在该节点到其可达叶子的所有路径上的黑色节点数目相同。 这些规则确保了从根到最近叶子的最大距离不会超过最小距离的一倍以上,从而维持了一种较为均衡的状态[^3]。 ### 插入机制解析 当向红黑中添加新的键值时,默认情况下新加入的节点会被标记成红色以减少违反上述条件的可能性。然而即便如此仍可能出现冲突情况——比如父级也为红色就违背了第四条原则;这时就需要通过一系列调整动作使整棵恢复合法形态,主要包括颜色翻转以及左旋/右旋两种方式[^2]。 ```c // 定义RBTree结构体表示整个红黑, Node代表单个节点. typedef struct RBTreeNode { int key; char color; // 'R' or 'B' struct RBTreeNode *left,*right,*parent; }Node; void insertFixup(Node* root, Node* z){ while (z != root && z->parent->color == RED) { ... } } ``` 此段伪代码展示了如何处理因插入而导致的不平衡状况的一部分逻辑流程,具体细节取决于实际应用场景下的需求设计。 ### 删除算法概览 移除某个指定元素的过程相对更为复杂一些,除了要考虑常规BST中的前驱后继关系外还需特别关注被删去位置处所遗留下来的空缺是否会引起连锁反应进而影响全局稳定性。为此通常采用替换法先找到合适替代品再做进一步修正工作直至完全消除负面影响为止。 ```c Node* treeMinimum(Node* node){ while(node->left!=NULL)node=node->left; return node; } void deleteFixup(RBTree T, Node x){...} ``` 这里给出了一些辅助函数用于支持完整的删除功能实现,其中`treeMinimum()`用来获取某子中最左侧的那个节点作为候选接替者之一,“deleteFixup()”则负责后续必要的结构调整任务以确保存储结构依然符合预期标准。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

进一步有进一步的欢喜

您的鼓励将是我创作的最大动力~

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值