【力扣-动态规划入门】【第 8 天】714. 买卖股票的最(佳)时机含手续费

本文探讨了在给定股票价格数组和手续费的情况下,如何通过无限次交易实现最大利润的问题。通过动态规划的方法,详细解析了每一步操作的状态转移方程,最终实现了获取最大利润的算法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

标题:714. 买卖股票的最佳时机含手续费
难度:中等
天数:第8天,第2/2题

给定一个整数数组 prices,其中第 i 个元素代表了第 i 天的股票价格 ;整数 fee 代表了交易股票的手续费用。

你可以无限次地完成交易,但是你每笔交易都需要付手续费。如果你已经购买了一个股票,在卖出它之前你就不能再继续购买股票了。

返回获得利润的最大值。

注意:这里的一笔交易指买入持有并卖出股票的整个过程,每笔交易你只需要为支付一次手续费。

示例 1:

输入:prices = [1, 3, 2, 8, 4, 9], fee = 2
输出:8
解释:能够达到的最大利润:
在此处买入 prices[0] = 1
在此处卖出 prices[3] = 8
在此处买入 prices[4] = 4
在此处卖出 prices[5] = 9
总利润: ((8 - 1) - 2) + ((9 - 4) - 2) = 8

示例 2:

输入:prices = [1,3,7,5,10,3], fee = 3
输出:6

提示:

  • 1 <= prices.length <= 5 * 104
  • 1 <= prices[i] < 5 * 104
  • 0 <= fee < 5 * 104

来源:力扣(LeetCode)
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。

class Solution {
    //动态规划 第8天 2/2
    public int maxProfit(int[] prices, int fee) {
        int size =prices.length;
        if(size < 2){
            return 0;
        }
        int[][] dp = new int[size][2];
        //买入
        dp[0][0] = -prices[0];
        //卖出
        dp[0][1] = 0;

        for(int i = 1; i < size ; i++){
            //买入  dp[i-1][0]保持前一天买入状态   dp[i-1][1] - prices[i]  从前一天卖出状态买入今天股票
            dp[i][0] = Math.max(dp[i-1][0],dp[i-1][1] - prices[i]);
            //卖出  dp[i-1][1] 保持前一天卖出状态  dp[i-1][0] + prices[i] - fee 前一天买入状态 今天卖出  -fee
            dp[i][1] = Math.max(dp[i-1][1],dp[i-1][0] + prices[i] - fee);

        }
        //最大值在卖出状态
        return dp[size-1][1];
    }
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Crazy丶code

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值