【力扣-动态规划入门】【第 10 天】413. 等差数列划分

本文介绍了一种算法,用于计算给定整数数组中所有等差子数组的数量。通过动态规划的方法,实现了对等差数列的有效判断及计数。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

标题:413. 等差数列划分
难度:中等
天数:第10天,第1/2题

如果一个数列 至少有三个元素 ,并且任意两个相邻元素之差相同,则称该数列为等差数列。

  • 例如,[1,3,5,7,9][7,7,7,7][3,-1,-5,-9] 都是等差数列。

给你一个整数数组 nums ,返回数组 nums 中所有为等差数组的 子数组 个数。

子数组 是数组中的一个连续序列。

示例 1:

输入:nums = [1,2,3,4]
输出:3
解释:nums 中有三个子等差数组:[1, 2, 3]、[2, 3, 4] 和 [1,2,3,4] 自身。

示例 2:

输入:nums = [1]
输出:0

提示:

  • 1 <= nums.length <= 5000
  • -1000 <= nums[i] <= 1000

来源:力扣(LeetCode)
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。

class Solution {
    //动态规划 第10天  1/2 
    //注意  :子数组 是数组中的一个《连续序列》。
    //例如:[1,2,3,4,5]   
    // [1,3,5] 不符合,它不连续
    // [1,2,3] [3,4,5] 符合连续规则
    public int numberOfArithmeticSlices(int[] nums) {
        int size  = nums.length;
        if(size < 3){
            return 0;
        }
        //记录等差子数组个数
        int sum = 0;
        //记录等差值
        int temp = nums[1]-nums[0];
        //记录连续等差数量
        int[] dp = new int[size];
         
        for(int i = 2;i < size;i++){
            //如果符合等差
            if(nums[i] - nums[i-1] == temp){
                //dp + 1;
                dp[i] = dp[i-1] + 1;
            }else{
                //不符合等差  重新赋值等差值
                temp = nums[i] - nums[i-1];
                //连续等差数量重置
                dp[i]= 0;
            }
            //记录到i位置已经满足的连续子序列
            sum += dp[i];
        }
        return sum;
    }
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Crazy丶code

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值